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Abstract—Pattern-based static analyzers like SpotBugs use bug
patterns (rules) to detect bugs may have several limitations:
(1) too slow, (2) do not usually support analysis of partial
programs, (3) require parsing code into AST/CFG, and (4) high
false positive rate. Each pattern relies on analysis context (e.g.,
data flow analysis) to improve the accuracy of the analysis. To
understand the analysis contexts required by each pattern, we
study the design of bug patterns in SpotBugs. Based on our study,
we present Codegex, an efficient pattern-based static analysis
approach that uses regular expression with several strategies to
extract more information from program texts (syntax and type
information). It can analyze partial and complete code quickly
without parsing code into AST. We evaluate Codegex using two
settings. First, we compare the effectiveness and efficiency of
Codegex and SpotBugs in analyzing 52 projects. Our results
show that Codegex can detect bugs with comparable accuracy as
SpotBugs but up to 590X faster, showing the potential of using
Codegex as the fast stage of SpotBugs in a two-stage approach
for instant feedback. Second, we evaluate Codegex in automated
code review by running it on 4256 PRs where it generated 372
review comments and received 116 feedback. Overall, 78.45% of
the feedback that we received is positive, indicating the promise
of using Codegex for automated code review.

Index Terms—Partial Program Analysis, Static Analysis, Regex

I. INTRODUCTION

Pattern-based static analyzers detect bugs via a set of bug
patterns (rules for detecting a potential problem in a given
program) but there exist several barriers that hinder their
wide adoption. First, developers think that static analyzers
are too slow to run [1], [2]. Most static analysis tools (e.g.,
Coverity [3] and Fortify [4]) are designed to run in batch
mode, and are not well-integrated into the development envi-
ronment (IDE) where instant feedback is required [5]. Second,
developers prefer static analyzers that support partial analysis,
analyzing only recent code changes [2], [6], [7]. Third, most
static analyzers rely heavily on compiler technologies. They
either (1) require users to manually set up build configurations
(cannot be easily deployed to support gazillions of repositories
in GitHub [6]) or (2) fail to run due to compilation errors in an-
alyzed project (27.5% of evaluated programs in SpotBugs fail
to run [8]). In fact, compiled classes may be unavailable [9]–
[11] but only Checkstyle [12] that checks for coding rules does
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not need compilation. Fourth, the high false positive (FP) rate
is the key barrier to using static analyzers [1], [13], [14].

We propose Codegex, a pattern-based static analysis ap-
proach based on regular expression (regex). Our key insight is
that many bug patterns checked by pattern-based static ana-
lyzers can be naturally represented by regex rules, especially
patterns that rely on string matching. By using regex to match
these patterns, our approach can address the aforementioned
limitations, including: (1) provides instant feedback by saving
compilation overhead, (2) supports analysis of partial pro-
grams, and (3) does not require parsing code into AST/CFG
that may cause build failure. However, relying solely on regex
may lead to high FP rate.

Pattern-based static analyzers usually use one or several
types of analysis contexts (e.g., data flow analysis) to reduce
FPs. To understand the analysis contexts required by each
bug pattern in a pattern-based static analyzer, we conducted
a study of SpotBugs. We select SpotBugs as it (1) is one
of the most popular static analyzers, and (2) has the largest
number of bug patterns than other tools (e.g., Error Prone,
PMD, Infer) [8], [15]. Our study revealed that: (1) most bug
patterns in SpotBugs do not require analysis contexts beyond
the class under analysis,(2) method information (e.g., method
name) required in some bug patterns can be extracted directly
from the program texts, and (3) data type information is the
most important one among all analysis contexts.

Inspired by our study, we design each pattern in Codegex by
first using a regex to match the bug within a single statement,
and then employing several heuristics to improve the efficiency
and accuracy on-demand if bug patterns require more analysis
contexts. These strategies include (1) syntax-guided matching
(using keywords to encode class/method signature informa-
tion), (2) explicit type-driven matching (matching implicit data
type for patterns requiring type checking), (3) matching at
word boundary (optimizing the analysis), (4) broadening anal-
ysis scope via ”diff” search (searching across all code changes
instead of a statement) and online search searching all files in
the repository), (5) encoding operator precedence (increasing
accuracy of analyzing arithmetic and bitwise operations), and
(6) enforcing anti-patterns (rules for filtering FPs).

Codegex can benefit developers in two settings: (1) Codegex
provides instant feedback in the IDE via 87 patterns. Motivated
by a prior study where developers expressed the need for a



two-stage approach in a program analyzer [2], Codegex is
used on top of SpotBugs with a two-stage approach where the
first stage runs the detectors for the 87 patterns in Codegex
to provide real-time feedback, and the second stage runs the
remaining detectors for more sophisticated analysis during
nightly builds. (2) Codegex analyzes the code snippets within
a pull request (PR) during code review. Prior studies show that
static analysis approaches could assist developers in automated
code review [16], [17]. A prior attempt was to integrate
FindBugs (a deprecated predecessor of SpotBugs) as part of
a review bot [18]. As it requires bytecode for analysis, the
Review Bot workaround this by (1) maintaining a local copy
of the project source code, (2) synchronizing the local copy
to the changelist determined by a trial-and-error approach
(trying each candidate changelist until the build succeeds),
(3) copying merged files, and (4) building the project. The
workaround may still incur build failures, causing delays in
running SpotBugs for automated code review.

Overall, our contributions can be summarized as follows:
• We perform the first study of the analysis contexts of 438

bug patterns in SpotBugs by reading their documentation
and implementation. It helps us identify the set of bug
patterns that can be run quickly in the two-stage approach.

• We propose Codegex, a novel static analysis approach that
uses regex-based rules and several strategies that augments
rules by analyzing contexts. Codegex can perform quick yet
accurate analysis of partial code snippets without parsing
into AST/CFG.

• We compare the effectiveness of Codegex and SpotBugs
on 52 open-source projects. Our results show that Codegex
can analyze real-world projects quickly with comparable
accuracy as SpotBugs. Codegex runs up to approximately
24K faster than SpotBugs when considering the initial
compilation time. Moreover, we manually analyzed the FP
and false negative (FN) cases reported by SpotBugs. Our
study reveals several limitations of SpotBugs, and provides
insights on potential improvements to its bug detection
capabilities. Overall, we have reported 16 bugs to SpotBugs
where ten are confirmed and eight are fixed.

• We evaluate the effectiveness of Codegex in automated code
review by running it against 4256 PRs from 2769 different
projects. As Codegex automatically analyzes PRs and leaves
code review comments, we assess whether it follows the bot
ethics [19]. To our knowledge, this is the largest evaluation
reported for automated code review on unresolved PRs.
In the end, we received 91 positive feedback from the
developers. The source code and our dataset are available
at the anonymous link at https://codegex-analysis.github.io.

II. MOTIVATING EXAMPLE

As Codegex only requires limited contexts (in a PR),
one may think that it is essentially trading accuracy
for speed. In this section, we use a simplified ex-
ample from a PR [20] to show how Codegex can
be faster and yet more accurate in detecting certain
patterns. Consider SA FIELD SELF COMPUTATION and

SA LOCAL SELF COMPUTATION patterns that check for
nonsensical self computation (e.g., x & x) in global fields and
local variables, respectively. Since Codegex relies on program
text information in partial snippets, it cannot distinguish be-
tween a global field and a local variable without analyzing its
scope. However, as self computation is considered problematic
in any scope (local or global), Codegex can still detect the
self computation. Listing 1 shows a self computation reported
by Codegex in the expression endDate.getTime() -
endDate.getTime(). Codegex detects the self computa-
tion by (1) searching for keywords representing arithmetic
operators (’|’, ’∧’, ’&’, ’−’), and (2) if the keyword is found,
it uses the following regex to detect the self computation:

subroutine of aux1named capturing group

(\w(?:[\w.]|(?P<aux1>...))*)\s*([|ˆ&-])\s*(\w(?:[\w.]|(?&aux1))*)

operand1 operator operand2

The regex above checks if operand1 matches operand2.
In contrast, SpotBugs fails to detect the self computation in
Listing 1 because (1) it performs bytecode analysis where the
check expression needs to be parsed and finds two method
invocations from the stack, and (2) it needs to match the
program text with the object endDate and the method
getTime() (if an expression includes a long method call
chain like a.b.c(), it needs to iteratively traverse the
call chains). Based on the example (x-x) provided in the
bug description for SA LOCAL SELF COMPUTATION, we
encode the ’-’ operator as one of the operators for self
computation, thinking that SpotBugs should be able to detect
the self computation temp-temp in Listing 2 where the
expression endDate.getTime() is stored in temp. But
SpotBugs still fails to detect the self computation as (1) it
fails to detect double type variables (the opcodes for integer
subtraction and floating point subtraction are different, adding
this support requires matching opcodes for all supported data
types); and (2) a bug exits in its current implementation of
self computation for local variables. Although the expression
x-x is listed as an example in its description, the current
implementation only matches expressions containing the xor
operator ”∧”, and ignores all other operators. We reported and
provided corresponding PRs to the developers of SpotBugs to
fix both limitations [21], [22], and the developers have been
accepted them. The example shows two problems in Spot-
Bugs: (1) incomplete modeling of sibling types (e.g., double
and integer), and (2) failure to handle complex expressions
involving method calls. Although it may seem trivial to extend
SpotBugs to support more opcodes, it requires the designer
of a bug detector to think exhaustively about the possible
scenarios (e.g., different data types) in which the detector will
be invoked. Our example also shows that the scope of the
variables (local versus field) is irrelevant for checking for self
computation. The key to check for self computations lies in
the string matching of the form x op x. Hence, we argue
that bug patterns that involve string matching (e.g. specified
method names or operators) can be more easily checked using



1 double e x a m p l e S e l f C o m p u t a t i o n 1 ( Date endDate ){
2 //Codegex reported a self computation
3 double temp = endDate . ge tTime ( ) − endDate . ge tTime ( ) ;
4 return temp ; }

Listing 1: Self computation detected by Codegex

1 double e x a m p l e S e l f C o m p u t a t i o n 2 ( Date endDate ){
2 double temp = endDate . ge tTime ( ) ;
3 // SpotBugs should report this self computation
4 double second = temp − temp ;
5 return second ; }

Listing 2: Self computation that should be detected by SpotBugs

regex rules.

III. MOTIVATING STUDY

Static analysis tools like SpotBugs rely on bug patterns, and
each pattern depends on different types of analysis contexts
to detect a bug. However, according to SpotBugs’s official
documentation [23], most of its analysis is local, which means
that many of the analysis contexts are not required to detect a
bug pattern. To investigate the required analysis contexts, we
conducted a study of 451 bug patterns supported by SpotBugs.
Our study aims to answer the research questions below:
RQ1: What is the scope of analysis needed to detect a bug
pattern in SpotBugs?
RQ2: What program analysis techniques are important for
detecting a bug pattern in SpotBugs?

RQ1 aims to identify the scope of analysis required for the
bug patterns in SpotBugs. In RQ2, we studied the program
analysis techniques needed for each pattern in SpotBugs. For
each question, two authors of the paper categorized the results
independently and met to resolve any disagreement.

For each bug pattern b, we first obtained a high-level
understanding of its design by reading b’s documentation
(also known as bug description in SpotBugs). Each bug
description contains (1) the rationale behind the bug patterns
(explaining why certain program behavior is problematic), (2)
the condition that will trigger the bug, and (3) examples of the
bug detected by a bug pattern. Then, if we failed to answer the
two research questions based on the bug descriptions, we refer
to the implementation of each pattern in SpotBugs. In total,
there are 451 patterns listed on SpotBugs’ bug description
page. We excluded 12 of them as they are internal patterns
used only by SpotBugs in experiments, and one of them as
the pattern has been deleted from the implementation. These
results in 438 patterns in our study. To study the analysis
contexts required by each of these 438 patterns, we consider
four scopes of analysis: (1) inter-class, (2) class, (3) method,
and (4) statement. If a bug pattern requires multiple analysis
scopes, we select the highest scope of analysis (e.g., if a pattern
needs class level and method level information, we consider
that it needs class level information). For RQ2, we study
program analysis techniques (type, annotation, java version,
data flow, control flow, call graph, inheritance graph) that are
used in each bug pattern.

Table I shows the results of our study where the ”Context”
column denotes the context information used, the ”Descrip-
tion” column explains each context, and the ”Pattern (%)”
shows the percentage of patterns that require specific contexts.
The ”Implemented (%)” shows the percentage of patterns
implemented in Codegex among all patterns using a particular
analysis context. Table I shows that most patterns in SpotBugs

Fig. 1: Workflow of Codegex

require analyzing only method level (41.32%) or statement
level (31.28%) information for their analyses, which indicates
that most patterns do not require information beyond the
class under analysis. Moreover, we observe that some method
information (e.g., method name) can be obtained by analyzing
the program texts. In fact, eight patterns in Codegex use the
method signature information for their analysis. Among all
program analysis techniques required by each pattern, our
study shows that data type information is the most important
one (44.29%). Meanwhile, the last rows of Table I show that
most bug patterns do not require information from various
graph representations (control flow, data flow, call graph,
inheritance graph). Specifically, most graph-based analysis
techniques are required in less than 10% of the bug patterns
in SpotBugs (except for inheritance graph).

IV. METHODOLOGY

Figure 1 shows the workflow of Codegex. Given a PR or a
complete program, Codegex first splits the code into program
statements S. Then, it uses our regex-based analyzer with
several heuristics to check if S matches any pattern. As the
complete program has been downloaded, Codegex skips the
online search, and relies on diff search for broadening its
analysis scope. The analyzer produces information about the
pattern type, bug description, source information (file name,
line number), and the priority for a warning, which can be
directly used as output for complete program. For PRs, our PR
comment generator automatically produces review comments
with the annotated code.

A. Preprocessing

PR: A PR in the unified diff format contains the contexts,
additions, and deletions. Our analyzer checks for violations in
contexts and additions but ignores the deletions (as they no
longer exist in the new version).
Complete program: A complete program is a code change
that adds all files within the project repository.



TABLE I: Analysis contexts used in the bug patterns in SpotBugs and those in the included patterns in Codegex

Context Description Patterns (%)2 Implemented (%)2

Inter-class Check in multiple classes whether a field/method exists or look at their content 9.36 0

Class

Import Check if the fully-qualified names (the import statement) contain specific substring 0.91

18.04

0

16.46Signature Check the kind (class/interface/enum), modifiers and name of the inspected class 3.2 35.71
Field Check the signature of fields (modifiers, type and name) in the inspected class 11.19 16.33
Body Use information from (1) at least two methods, or (2) one method and other class-level info 10.96 2.08

Method

Signature Check modifiers, return type, method name, parameters of the inspected method 13.7

41.32

13.33

18.78Local variable Check the signature or usage of local variables 4.57 40
Field Check the usage of fields in the scope of the inspected method 4.79 14.29
Body Use information from (1) at least two statements, or (2) one statement and other method-level info 34.02 10.74

Statement Use information from only one statement or expression 31.28 30.66

Analysis Techniques

Type Check the data type information of constants, variables or fields 44.29
Annotation Check annotations of class, fields, methods or parameters 5.02
Java version Check the JDK version 1.14
Data flow Calculate the set of possible values at each program point 9.36
Control flow Check the control flow of the program 9.36
Call graph Check the relationship between method calls 3.2
Inheritance graph Check the inheritance relationship between classes 17.81

1 The numbers (in bold text) for inter-class, class, method and statement levels do not overlap and sum up to 100 (e.g., 9.36+18.04+41.32+31.28=100%). The numbers for
the sub-contexts for class level, method level and analysis techniques are intersecting (e.g., one pattern can use method information from signature and local variable).

2 We compute these values using the total number of patterns (438) as the denominator.

Given a PR or a complete program with code changes C,
Codegex parses the program text in C, and splits the texts into
program statements. Specifically, it separates statements using
terminators for Java programs (i.e., semicolon, ‘{’, and ‘}’).
Preprocessing allows each pattern to be matched statement-
by-statement, giving the exact position of the statement.

B. Regex-based Analyzer

Given statements S extracted from our preprocessing, our
analyzer detects violation for bug patterns in S. The key
technical challenge is to represent the selected patterns in
SpotBugs using regex rules without compromising accuracy.
We use several heuristics described below to solve this prob-
lem:
Syntax-guided matching. Table I shows that many SpotBugs
patterns use class signature information(3.20%) or method
signature (13.70%) for detection. To encode such informa-
tion into our regex rules, we use keywords representing
class/method/variable/field names, modifiers (e.g., ”static”),
Java keywords (e.g., ”if”)), and operators (”&&”) that are
within the Java syntax for the bug detection. To support
syntax-guided matching, we use the layered analysis ap-
proach [24] by checking a pattern using two phases: (1)
keyword matching, (2) pattern-based matching using regex.
Keyword matching to filter statements that do not match any
patterns is a faster than regex rules. Specifically, it checks
whether a statement contains a keyword that represents the
condition for a bug pattern or a group of bug patterns. For
example, the SE NONSTATIC SERIALVERSIONID pattern
checks whether the field name serialVersionUID of a
serializable class is declared as static. Statements with-
out the keyword ”serialVersionUID” are skipped in keyword
matching.
Explicit type driven matching. Our study in Section III
shows that data type information is an important analysis
context used in many bug patterns. Although Codegex
essentially treats code changes as plain texts for pattern
matching, we incorporate explicit type information into bug
patterns by using data types as keywords for its analysis.

For example, when detecting the pattern RV 01 TO INT
that gives a warning when a random value from 0 to 1
is being coerced to integer value, Codegex uses the regex
\(\s*int\s*\)\s*(\w+)\.(?:random|nextDouble
|nextFloat)\(\s*\) for its detection where the
\(\s*int\s*\) part detects the type coercion. By
including the data type information, Codegex can report this
pattern with high confidence by setting the bug pattern to
high priority (the same priority used in SpotBugs).
Optimization by matching at word boundary. One of the
commonly used heuristics to optimize regex performance is to
do “whole words” matching by using word boundaries [25].
In the regex syntax, ‘\b’ matches a word boundary (edge be-
tween sequences of alphanumeric characters or the underscore
character, and any other character). For example, the regex
\bif\b matches the standalone string “ if ” but does not
match “ifa” because there is no word boundary to the right
of “if”. As program texts are usually whole word strings, we
restrict each bug pattern to search for whole words so that it
will skip over non-matching input quickly.
Broaden analysis scope via diff search and online search.
Our study in Section III shows that some bug patterns in
SpotBugs require more analysis contexts to detect certain
patterns. Codegex includes two heuristics to enhance the
analysis contexts: (1) diff search, and (2) online search.
When these heuristics identifies the relevant analysis contexts,
Codegex will adjust the priority for a given bug pattern
as it gains higher confidence with more contexts. For most
implemented bug patterns, Codegex matches a regex against a
single program statement st. When the diff search heuristic
is activated in a bug pattern, Codegex will use additional
contexts around st by searching through all code changes in
the input PR. For example, consider the SpotBugs pattern
UI INHERITANCE UNSAFE GETRESOURCE that warns
about the usage of this.getClass().getResource()
being unsafe if this class is extended by a class in another
package. Detecting this pattern requires checking whether (1)
a statement contains the getClass().getResource()
method invocations (regex can be used to match this), and (2)



if the class is extended (SpotBugs will increase the priority
of the warning if this condition is met). To check for the
(2) condition, Codegex searches for the “extends ClassA”
keywords (ClassA is the filename of this instance) within
the code changes (“diff”) in the given PR using the diff
search heuristic (note that this will not work for inner class
with different filenames). If the diff search fails, Codegex
will deploy online search to check for the (2) condition. As
Codegex only pre-downloads “diff” in the PR, other classes
that extend ClassA are not available for analysis (i.e., they
may be in different files or different folders than the modified
files in the PR). Hence, we implement online search using
the GitHub Search API1 to perform code search of the entire
repository of the given PR for the “extends ClassA” keywords.
If the query is found within the repository of the PR, Codegex
will increase the priority of the bug pattern because the (2)
condition is satisfied. Currently, Codegex uses online search
in only one pattern because (1) it is expensive as it relies on the
speed of the GitHub Search API, and (2) it requires defining a
search query with exact matching (e.g., if we change the query
to “extend Class”, the search may return irrelevant results).
Encode operator precedence. We encode the Java operator
precedence (used for determining the order in which operators
are evaluated) in our analyzer to increase the accuracy of
analyzing arithmetic and bitwise operations. For example,
when detecting the SA LOCAL SELF COMPUTATION pat-
tern that checks for nonsensical self computation in return
i|i&j;, if we use a regex to extract the bitwise operation,
it will match the first expression i|i instead of i|(i&j)
because the precedence of & is higher than that of |. Encoding
operator precedence will reduce Codegex’s FP rate.

Most patterns in SpotBugs have anti-patterns (i.e., rules ()
that disallow matching certain elements). To reduce FPs, we
encode anti-patterns using two heuristics:
Encode anti-patterns via keyword filtering. To under-
stand and reuse the design of each pattern, we refer to:
(1) bug description, (2) source code, and (3) test cases
in SpotBugs. We extract anti-patterns from these resources
to improve the accuracy of our analysis. For example, the
pattern NM CLASS NAMING CONVENTION checks for
upper camel cases of a Java class. To prevent FPs when
analyzing special classes, SpotBugs added a filter for class
names with the underscore character. We reuse this filter to
skip the checking for class names with underscore characters.
Encode anti-patterns via negative lookahead. As Codegex
analyzes incomplete programs that may contain only the dec-
laration site or the call site of methods, it uses negative looka-
head (a regex construct q(?!u) used to match q not followed
by the regex u) for filtering negative/corner cases. For exam-
ple, to detect the NM METHOD NAMING CONVENTION
pattern that checks whether a Java method is in the lower
camel cases format, we include the regex (?!new) to avoid
matching constructors (e.g., new Object()) that can have
method names starting with a capital letter.

1https://docs.github.com/en/rest/reference/search

TABLE II: Statistics of implemented bug patterns.

Category # implemented patterns Total
CORRECTNESS 37 145
BAD PRACTICE 22 91
PERFORMANCE 14 37
STYLE 8 86
MT CORRECTNESS 5 46
MALICIOUS CODE 1 17
Others 0 16
Total 87 438

C. PR Comment Generator

For each code snippet in a PR in which our analyzer pro-
duces a warning, our PR comment generator will give a review
comment with the annotated code. We reuse SpotBugs’s bug
description for the comments. In SpotBugs, code that violates
a bug pattern pat has (1) a bug category cat (e.g., STYLE), (2)
a short description sd, and (3) a long description ld. Codegex
produces review comments using the template below:

I detect that this code is problematic. According to the cat, sd (pat). ld

Figure 3 shows an example of Codegex’s
generated comment and the annotated code for the
NM METHOD NAMING CONVENTION pattern that
belongs to the BAD PRACTICE category.
Implementation. Codegex uses the Python built-in regex
library in which the regex pattern language has been stud-
ied [26], and its extension that offers extra functionalities (e.g.,
named capturing group). Table II shows the statistics of the
implemented bug patterns across different categories. The “#
implemented patterns” column shows the number of patterns
implemented in Codegex, and the “Total” column denotes the
total number of patterns in SpotBugs. We only implement
87 patterns because 212 patterns require supporting multiline
regex, and 139 patterns cannot be detected using regex. As
shown in Table II, most patterns Codegex currently supports
belong to the CORRECTNESS and BAD PRACTICE cate-
gories. We prioritize these categories because prior studies of
FindBugs have shown their importance (i.e., most development
efforts focus on these categories [27], and they have a shorter
lifetime implying that they are more serious [28]).

V. EVALUATION

We evaluate two settings in which Codegex may be useful:
(1) giving instant feedback for real-world projects, and (2) pro-
viding review comments for PRs. Codegex uses several heuris-
tics to improve the effectiveness of analysis (Section IV-B). As
all heuristics (except for online search) are tightly coupled with
the design of each bug pattern, we did not separately evaluate
each heuristic.

All experiments were conducted on a machine with Intel
(R) Core (TM) i7-8700 CPU @3.2 GHz and 32 GB RAM.
Comparison with SpotBugs. While there are many static
analyzers [12], [29]–[32], we only evaluate against SpotBugs
because patterns in Codegex are derived from SpotBugs, and
patterns determined the types of detected bugs (fair compari-
son with other analyzers is infeasible because each tool detects



TABLE III: Performance of Codegex versus SpotBugs (in seconds)

Project KSLOC SpotBugs Codegex Speedup
IC SC A(S) A(C) S1 S2 S3

community 3.72 160.80 6.55 5.13 0.58 283.91 19.98 8.78
Angular2AndJavaEE 1.42 239.20 92.80 5.44 0.25 963.40 386.87 21.42
biojava 117.78 59.22 13.70 42.44 19.30 5.27 2.91 2.20
nacos-spring 1.80 584.01 12.84 15.36 0.31 1925.08 90.57 49.33
spring-boot 0.48 59.09 3.59 3.60 0.07 904.59 103.78 51.92
spring-boot-java 5.30 70.00 9.80 5.00 0.92 81.80 16.14 5.46
quickfixj 1279.49 442.60 180.20 116.80 3.25 171.90 91.26 35.89
spring-comparing 0.91 178.40 7.22 4.36 0.14 1304.40 82.65 31.09
tij4-maven 17.89 54.19 0.24 1.05 <0.01 5524.60 129.80 105.40
fabric8-maven-plugin 48.01 2654.20 17.39 43.60 3.79 712.10 16.10 11.51
java-microservice 2.59 883.80 8.12 11.04 0.04 24213.24 518.55 298.78
spring-cloud-release 0.49 68.37 59.86 1.55 <0.01 6991.80 6140.40 154.60
java-uuid-generator 3.07 7.13 2.17 1.80 0.26 34.02 15.14 6.86
cloud-opensource 10.51 721.80 322.60 11.17 0.90 817.39 372.22 12.46
flyer-maker 0.76 13.37 1.83 3.51 0.15 114.54 36.25 23.83
gchisto 6.57 8.60 2.70 5.61 1.23 11.54 6.75 4.56
travels-java-api 2.95 204.60 5.16 4.49 0.35 597.25 27.56 12.82
spring-zeebe 1.58 951.80 8.38 10.51 0.22 4326.06 84.93 47.26
visualee 3.76 37.26 3.48 4.04 0.32 130.81 23.82 12.80
javaee7-essentials 0.01 1.61 1.29 1.11 <0.01 272.40 239.60 111.00
webcam-capture 16.02 183.20 7.24 32.07 1.93 111.40 20.34 16.60
cloud-espm-v2 4.67 4.19 3.70 5.94 0.45 22.40 21.30 13.13
reactive-ms-example 1.49 570.00 3.55 3.58 0.10 5986.65 74.42 37.32
osgi.enroute 0.99 3351.60 163.20 15.84 0.24 13815.62 734.53 64.97
kafka-streams 99.40 4203.80 23.62 9.35 16.94 248.64 1.95 0.55
code-assert 7.61 970.20 10.46 11.03 1.10 889.68 19.48 10.00
opencc4j 0.87 80.80 2.62 3.36 0.10 815.89 57.97 32.61
hprose-java 15.85 12.37 3.72 6.06 2.85 6.47 3.43 2.13
SpringBootUnity 5.86 2682.20 17.76 31.70 1.19 2287.90 41.70 26.72
triava 5.92 7.26 2.09 4.52 0.98 12.07 6.78 4.63
jol 7.20 14.01 3.13 10.73 0.86 28.73 16.10 12.46
javaee8-essentials 0.02 1.38 1.10 1.14 <0.01 251.80 224.00 113.80
cargotracker 5.97 626.00 6.40 4.54 0.73 864.99 15.01 6.23
hope-cloud 0.14 168.80 5.94 8.38 0.01 11935.33 964.24 564.37
java-speech-api 1.37 8.60 1.68 3.74 0.28 43.49 19.09 13.18
jmh 249.88 73.42 16.23 29.73 3.71 27.80 12.39 8.01
javaee-javascript 0.35 27.69 1.90 3.29 0.06 547.18 91.67 58.14
paho.mqtt.java 28.44 31.92 11.35 13.59 3.43 13.26 7.26 3.96
bitfinex-v2 6.41 24.89 2.78 4.51 0.91 32.18 7.98 4.93
aem-component 1.65 88.96 6.62 4.20 0.33 281.43 32.70 12.69
superword 9.08 115.00 23.13 6.14 1.83 66.14 15.98 3.35
reddit-bot 1.50 15.27 3.45 3.84 0.20 95.71 36.50 19.24
asmsupport 26.71 28.78 6.28 16.78 4.44 10.26 5.19 3.78
Benchmark 146.26 110.00 15.03 21.79 28.79 4.58 1.28 0.76
wro4j 33.41 356.20 44.72 11.91 3.34 110.26 16.96 3.57
spring-mvc 2.00 83.20 4.80 4.25 0.34 261.02 27.03 12.70
spring-context 3.06 14.42 1.94 3.86 0.38 48.06 15.25 10.15
iot-dc3 14.67 295.20 28.01 45.70 2.97 114.65 24.79 15.37
nacos-spring-project 7.40 104.20 6.94 8.31 0.90 124.99 16.94 9.23
spring-boot-graalvm 0.05 59.06 3.21 3.37 0.01 10927.37 1151.37 589.86
cms-admin-end 8.23 74.80 5.19 5.64 1.47 54.91 7.39 3.85
spring4.x-project 0.58 348.80 2.08 22.42 0.11 3495.71 230.69 211.12
Average 42.73 425.70 23.07 12.67 2.18 1979.28 237.06 55.72

different types of bugs). Our evaluation aims to address the
questions below:

RQ3: Compared to SpotBugs, what is the quality of the
generated warnings by Codegex?
RQ4: How responsive is Codegex compared to SpotBugs?

Selection of projects. We evaluate Codegex and SpotBugs on
52 open-source Java projects on GitHub. Projects are selected
by building a crawler to get the top 100 Java projects that
(1) have the greatest number of stars, and (2) use Maven
for compilation (the SpotBugs Maven plugin is baseline).
Although Codegex does not require compilation, SpotBugs can
only be run on compiled code so we excluded 48 uncompilable
projects. We manually classify the root causes of build errors
from 48 projects’ build logs using the definition [33]. We
conclude that these errors occur due to: (1) 19 compilation
errors caused by incompatible Java versions or syntax errors in
the code, (2) 13 resolution errors due to missing dependencies
or dependency version issues, (3) 12 errors are other causes
(e.g. network problems), and (4) four build file parsing failures.
The high percentage of build errors in popular Java projects
is inline with the findings of prior work that broken snapshots
occur in most projects [33]. It motivates the need for a tool that
does not require compilation. We did not further crawl more
projects due to limited resources and high manual inspection
costs. In total, we evaluate on 52 Java projects. To the best of

our knowledge, the number of evaluated projects is the largest
reported so far in all prior evaluations of static analyzers [13],
[34]–[36]. Table III presents the performance comparison with
SpotBugs. The ”Project” column denotes the abbreviated name
of each project, and the ”KSLOC” column means the 1000 (K)
Source Lines of Code (SLOC). Overall, the evaluated projects
are diverse in terms of size (0.01–1279.49 KSLOC).

When running SpotBugs, we use default configurations
except for two differences: (1) using the debug option in
SpotBugs to output a list of analyzed files and give the list to
Codegex to ensure that both tools analyze the same files (note
that we disable the debug option when computing the analysis
time to avoid adding overhead to SpotBugs), (2) running both
tools only on the 87 implemented patterns, filtering out the
unimplemented patterns in SpotBugs. In our experiments, we
use version v4.1.4 of SpotBugs and SpotBugs Maven Plugin
(v4.2.3). To ensure fair comparison with SpotBugs, the entire
repository is downloaded and the same set of files are given
to both tools for analysis.
Quality of generated warnings. We measure the quality of
the warnings generated by each tool. Given the set C of
Codegex’s generated warnings and the set S of SpotBugs’
generated warnings, we use S

⋃
C as our ground truth because

(1) labeled dataset for all the evaluated projects is unavailable
and manually labeling each statement as buggy or not is time-
consuming, and (2) as FNs are absent warnings, we can only
rely on the extra warnings (S′ or C ′) to determine the FNs of
each tool. We compute relative true positive (TPR) which is
true warning in S

⋃
C, relative false positive (FPR) which is

false warning in S
⋃

C, relative false negative (FNR) refers
to unreported true warning in S

⋃
C.

Relative Accuracy= TPR+TNR

TPR+FPR+FNR+TNR

Relative Recall= TPR

TPR+FNR J(S, C)= |S∩C|
|S∪C|=

760
883 ≈ 0.86

Relative accuracy and recall are used to compare the quality
of analysis results, whereas Jaccard index (J(S, C)) is used to
measure the similarity between two sets of data (between S
and C). The precision is 100% for each tool as all results will
be in our ground truth dataset. The high Jaccard index between
the warnings generated by SpotBugs and those generated by
Codegex (0.86) indicates that the analysis results of Codegex
are comparable to that of SpotBugs. Since Jaccard index
shows high similarity between S and C, we divided the set of
warnings given by both tools into:
(O) Overlaps: The set of warnings generated by both tools
that match the same bug instance (the same statement within
the same class for the same project). When both tools give the
same warnings, we assume that these warnings share the same
quality and label them as TPR. We manually analyzed them
to verify that they are referring to the same bug instance.
(S’) Unique in SpotBugs: The set of warnings generated ex-
clusively by SpotBugs but not produced by Codegex.
(C’) Unique in Codegex: The set of warnings generated ex-
clusively by Codegex but not produced by SpotBugs.
RQ3: Results for effectiveness. Table IV presents the results
for the effectiveness of SpotBugs and Codegex for the patterns



TABLE IV: Effectiveness of Codegex versus SpotBugs

Pattern TPR FNR
O Accuracy Recall

S C S C S C S C
ES COMPARING STRINGS WITH EQ 16 5 0 11 5 100.0 31.25 100.0 31.25
SA SELF COMPUTATION 0 1 1 0 0 0.0 100.0 0.0 100.0
EQ COMPARING CLASS NAMES 0 1 1 0 0 0.0 100.0 0.0 100.0
DMI RANDOM USED ONLY ONCE 176 215 39 0 176 81.86 100.0 81.86 100.0
SA SELF COMPARISON 0 1 1 0 0 0.0 100.0 0.0 100.0
VA FORMAT STRING USES NEWLINE 60 66 6 0 60 90.91 100.0 90.91 100.0
NM CLASS NAMING CONVENTION 6 5 0 1 5 100.0 83.33 100.0 83.33
DM STRING CTOR 5 1 0 4 1 100.0 20.0 100.0 20.0
UI INHERITANCE UNSAFE GETRESOURCE 8 9 1 0 8 88.89 100.0 88.89 100.0
DMI USELESS SUBSTRING 0 1 1 0 0 0.0 100.0 0.0 100.0
DM BOXED PRIMITIVE FOR COMPARE 2 1 0 1 1 100.0 50.0 100.0 50.0
DM BOXED PRIMITIVE FOR PARSING 13 5 0 8 5 100.0 38.46 100.0 38.46
IIO INEFFICIENT LAST INDEX OF 26 25 0 1 25 100.0 96.15 100.0 96.15
DMI HARDCODED ABSOLUTE FILENAME 46 16 1 31 15 97.87 34.04 97.87 34.04
IIO INEFFICIENT INDEX OF 363 354 3 12 351 99.18 96.72 99.18 96.72
Others (20 unique patterns) 108 108 0 0 108 100.0 100.0 100.0 100.0
Total 829 814 54 69 760 93.88 92.19 93.88 92.19

in S′ or C ′. The ”O” column shows the number of overlapping
warnings (O) for each bug pattern where the ”Others” row
denotes 20 bug patterns where both tools produce the same sets
of warnings (i.e., achieve same accuracy and precision). The
”Accuracy” and ”Recall” columns show the relative accuracy
and relative recall, respectively. We observe that the values for
the relative accuracy and recall for a tool are the same in each
row. We explain this scenario by including ”TPR” columns
to show the relative true positives and ”FNR” columns to
show the relative false negatives (we did not show the values
for relative TN and FP as TPR=FPR=0 for all patterns).
The relative FPR=0 for all patterns because (1) our manual
analysis shows that all evaluated tools only generate true
warnings (no theoretical FP), and (2) these warnings may be
marked as effective FP [37] by developers but we only evaluate
theoretical FP in Q1. Overall, Codegex achieved comparable
results with SpotBugs in terms of overall accuracy and recall.
As highlighted in Table IV, Codegex outperforms SpotBugs in
accuracy and recall for seven patterns. We observe that these
seven patterns mostly rely on string matching (e.g., matching
the program text of the operands for the self computations
patterns, and matching class/method names for patterns like
DMI RANDOM USED ONLY ONCE). This observation is
inline with our hypothesis that bug patterns relying on string
matching can be more easily matched via regex rules. Refer
to Section VII for the limitations of each tool.

Answer to RQ3: Codegex achieves comparable accuracy as
SpotBugs.

Responsiveness. We compute the metrics below:
(IC) Initial compilation time: Time taken to build a project
(SC) Subsequent compilation time: Time taken to build a
project with all dependencies being pre-downloaded.
(A(t)) Analysis time: Time taken for a tool t to produce
analysis reports. We use A(S) to denote SpotBugs’ analysis
time, and A(C) for Codegex’s analysis time.

S1 = IC+A(S)
A(C) S2 = SC+A(S)

A(C) S3 = A(S)
A(C)

We calculate IC and SC only for SpotBugs as it requires
compilation. We include both IC and SC since one may argue
that IC is unimportant as downloading dependencies is only a
one-time effort. To account for performance differences across
multiple runs, we rerun each time calculation for five runs and
reported the average time in Table III.
RQ4: Results for response time. The last seven columns in

Table III show the performance comparison between Codegex
and SpotBugs. The ”IC” column shows the initial compi-
lation time (IC) needed for building each project, whereas
the ”SC” column denotes the subsequent compilation time
(SC) for building each project. And the ”A(S)” and ”A(C)”
columns denote the analysis time for SpotBugs and Codegex,
respectively. The ”S1”, ”S2” and ”S3” columns show the
speedup achieved by Codegex over SpotBugs taking the sum
of initial compilation time and analysis time (S1); taking the
sum of subsequent compilation time and analysis time (S2),
and considering only the analysis time (S3). We observe quite
impressive speedups up to 24k for initial compilation as it
takes time to download dependencies for some Java projects
but Codegex does not have this limitation. Moreover, Codegex
also outperforms SpotBugs in terms of other speedups (S2
and S3). Specifically, Codegex achieves an average speedup
of 237.06 over SpotBugs for S2, and average speedup of
55.72 for S3. Considering only the analysis time for both
tools (A(S) and A(C)) for measuring response time, SpotBugs
has an average analysis time of 12.67s, whereas Codegex has
an average analysis time of 2.18s. On average, the analy-
sis time for Codegex is below Nielsen’s 10s recommended
threshold for interactive feedback, suggesting that Codegex
allows ”keeping the user’s attention focused on the dialogue”,
whereas SpotBugs results have exceeded the limit, indicating
that ”users will want to perform other tasks while waiting for
the analysis to finish” [38].

Answer to RQ4: Codegex can provide instant feedback with
average analysis time of 2.18s (SpotBugs takes an average of
12.67s).

Effectiveness of Codegex for code review. We evaluate the
effectiveness of Codegex in generating code review comments
for open PRs by answering the following questions:
RQ5: What is the quality of Codegex’s generated comments?
RQ6: How efficient is Codegex in performing code review?
Crawling PRs. Existing datasets for evaluating automated
code review approaches are unsuitable for our evaluation
because they only contain manual code review comments
(ground truth) [39]–[42], which may not cover the problems
reported by a static analyzer. To evaluate the real capability of
Codegex in generating review comments, we build a crawler
to get the 10977 most recently opened PRs in GitHub. We
select the PRs that have at least one code change in Java files
(because our tool only analyzes Java files), resulting in 4256
PRs from 2769 different projects. Supplementary table shows
that evaluated PRs are quite diverse as involved patches that
modify 0–25267 lines of code, and span across 1 – 30 files.
Measuring quality of generated reviews. As manually check
for the correctness of the 372 generated comments for 4256
PRs is time-consuming, we rely on the developer feedback
to measure their qualities. Given a PR and its corresponding
feedback f , we manually classify f into:
(AF) Accept and fixed: We consider f to be AF if the
developer (1) gave positive feedback or acknowledgment and



Fig. 2: Quality of Codegex’s generated review comments

(2) modified or mentioned they will fix it in the future.
(AC) Accept: We consider f to be AC if the developer
(1) gave positive feedback or acknowledgment, or (2) used
positive emoji.
(NI) Not interested: We consider f as NI if the developer
(1) used neutral emoji, (2) wanted to unsubscribe our service,
(3) said that our suggestions have little impact, or (4) ignored
our comment.
(MR) Mark as resolved: We consider f as MR if the de-
veloper marked our comments as resolved but did not reply.
(FP) Mark as FP: We consider f as FP if the developer (1)
used negative emoji, (2) found inconsistency between their
code and our comment, or (3) said that our comment is
inapplicable.

RQ5: Results for quality of generated reviews. Some code
changes have multiple violations for a bug pattern. Instead
of leaving a comment per violation, Codegex only gives
a comment per bug pattern to avoid spamming developers
with too many comments. In total, we received 116 pieces
of feedback from developers of corresponding PRs where
AF=55, AC=36, NI=7, MR=6, and FP=12. The effective
false positives (12/116≈10%) match well with the expectation
in prior study [37]. We ran 12 FPs in SpotBugs and found
that it gave the same ten FPs. The two remaining FPs are due
to the failure of Codegex in matching special AST elements.
Figure 2 presents a bar chart where the x-axis shows the
number of received feedback for a given category, and the
y-axis shows the names of the patterns with at least one
feedback. Different shades denotes different categories, where
”AF” (unshaded) and ”AC” (diagonally shaded) are positive
feedback. ”NI” (vertically shaded) and ”MR” (horizontally
shaded) are neutral feedback, whereas ”FP” (black) denotes
FPs. Overall, most feedback is positive (only five patterns with
≥1 negative feedback).

Answer to RQ5: Among the feedback from 116 that we
received from developers, 78.45% of them are positive.

Fig. 3: Example feedback received for a PR in OpenJDK [43]

Example feedback. Figure 2 shows that developers tend
to give feedback for patterns related to naming conventions
(patterns with names ending with NAMING CONVENTION).
This observation is inline with prior studies of code re-
view that show that developers usually fix maintainability-
related issues [44], [45]. Figure 3 shows positive feedback for
the NM METHOD NAMING CONVENTION pattern for an
OpenJDK’s PR. In his response, the OpenJDK developer said
that Codegex helped in detecting method renaming problems
in several 20-year-old methods.Consider another positive feed-
back for the PR [46] where the developer not only agreed
with the Codegex’s generated comment, but also added the
SpotBugs plugin after getting our automatically generated
comment. As SpotBugs and Codegex give similar outputs
(all comments in Codegex are derived from bug descriptions
in SpotBugs), these developers have mistakenly treated our
tool as SpotBugs. This result is inline with our results that
show that Codegex can achieve comparable accuracy as Spot-
Bugs. Moreover, the positive feedback also shows the role of
Codegex as a lightweight frontend for SpotBugs that provides
better user experience (i.e., does not require build configu-
ration, and provides quick yet accurate feedback), prompting
users to install SpotBugs after trying our lightweight frontend.
RQ6: PR Analysis time. For the 4256 evaluated PRs,
Codegex automatically produces 372 review comments. In
total, Codegex takes 702 seconds to analyze 4256 PRs. If we
turn off the online search strategy, Codegex only takes 168
seconds to analyze 4256 PRs. The average analysis time is
0.039 seconds per PR. These results are below the Nielsen’s
0.1 second recommended time limit for a system to react
instantenously [38], indicating the promise of using Codegex
in an online setting (as a code review bot for checking PRs).

VI. SURVEY ON THE EASE OF WRITING REGEX RULES

To evaluate the ease of writing regex rules compared to
the non-regex rules in SpotBugs, we surveyed five students
at the authors’ university (two first-year graduate students and
three juniors) for their experience in implementing regex rules
in Codegex referring to the corresponding implementations
in SpotBugs. The survey contains questions about (1) prior
programming experience, (2) the familiarity with regex, and
the ease of writing bug detection rules (see supplementary



material for the questions). The participants have 2–5 years
of Java programming experience (SpotBugs is written in Java)
and 1–2 years of Python programming experience (Codegex is
implemented in Python). Overall, our survey results show that
although most participants are moderately familiar with regex
(average Likert score=2.6 with 5 being expert), they think that
implementing a bug pattern using regex-based rule is easier
than using non-regex in SpotBugs as they rated the difficulty
of using regex (average Likert score=2.8 with 5 being very
difficult) lower than that of using non-regex (average Likert
score=3.6).

VII. LIMITATIONS

SpotBugs’ limitations. Below are SpotBugs’ limitations based
on FNRs in Table IV:
Missed specific kinds of operands (35/54): As Spot-
Bugs analyzes bytecode, its bug detection has to con-
sider the variants of the same operation given differ-
ent kinds of operands. For example, when detecting the
DMI RANDOM USED ONLY ONCE pattern that warns
when a random object is created and used only once,
SpotBugs has FNRs when analyzing int randNumber =
new Random().nextInt(99); since it only checks for
instructions that load a local variable but misses those that load
a constant (99). Future research can work on testing SpotBugs
with different kinds of operands to find these FNRs.
Missed compound expressions (8/54): The bug
detection rules in SpotBugs usually only consider
simple expressions, and may miss violations in
compound expressions. For example, when detecting
the VA FORMAT STRING USES NEWLINE pattern
that gives a warning when a format string statement
includes a newline character ’\n’, SpotBugs has an FNRs
for String.format(var+"GitHub.\n"); with a
compound expression var+ "GitHub.\n" due to the
unsupported string concatenation operation.
Incomplete modeling of sibling types (6/54): As sibling types
(e.g., the two floating-point types: float and double) share
similar behaviors, one would expect SpotBugs to give similar
warnings during its analysis. However, when checking for the
pattern RV 01 TO INT that reports a warning when a random
value is being coerced to the integer value 0, SpotBugs only
checks for certain APIs that produce a random value (e.g.,
nextDouble()), and omit other similar APIs with sibling
types (e.g., nextFloat()).
Handling method calls (4/54): In Section II, we propose ex-
panding the detection of self computation by treating method
calls as expression. For example, SpotBugs has an FNR when
checking size+=(dom.getSegmentAtPos(a).get
From()-dom.getSegmentAtPos(a).getFrom()+1);
as it fails to detect the self computation in the method call
dom.getSegmentAtPos(a).getFrom().
Inconsistent bug description (1/54): We found
an inconsistency in the bug description for the
EQ COMPARING CLASS NAMES pattern. Specifically,
it stated that “This method checks to see if two objects are

the same class by checking to see if the names of their
classes are equal” so we expect SpotBugs to warn about
c.getClass().getName().equals(c2.getClass()
.getName()) but it has an FNR because it only checks
if the comparison is inside the equals method. When
we read the bug descriptions for other related patterns, we
think that it should be changed to ”This class defines an
equals method that ...” [47]. As the users rely on the bug
description to understand warnings, future researches could be
approaches that automatically detect inconsistencies between
bug descriptions of related patterns.
Limitations of a regex-based approach. Based on the FNRs
for Codegex in Table IV, we identify the following limitations:
Only support single-statement (44/69): Due to
the lack of multiline regex support, Codegex fails
to detect patterns that require sophisticated analysis
(data flow analysis). For example, the pattern
DMI HARDCODED ABSOLUTE FILENAME requires
checking (1) a File object is created, and (2) there exists an
absolute path string in the File object creation. As Codegex
can only detect explicit object creation (e.g., new File(”/abs”)),
it fails to detect the string usage in indirect object construction
(e.g., inside the method parseZip("/abs")). In future,
we plan to use the multiline mode in the regex library to
support more patterns .
Fails to infer data type (24/69): As Codegex relies on
explicit type driven matching, it fails to detect patterns that
require type inference. For example, when detecting the
ES COMPARING STRINGS WITH EQ pattern which com-
pares String objects for reference equality using the ==
or != operators, Codegex fails to warn about the expression
this.getName()==that.getName() due to failure to
infer the return type of the getName() method.
Missed special AST elements (1/69): As Codegex
does not parse code into ASTs, it may miss
some AST nodes. For example, when checking the
NM CLASS NAMING CONVENTION pattern that checks
for upper camel cases, Codegex did not warn about the enum
complexFeaturesAppendEnum expression because we
do not consider enum as a type of special Java class.

VIII. RELATED WORK

Enhancing static analysis. Several techniques were pro-
posed to prioritize more important generated warnings in
FindBugs [13], [14], [36]. Previous work (e.g., [5], [48]–
[50])focus on improving performance of static analysis via
staged analyses. Although Codegex uses a two-stage approach
for quick analysis, it uses different techniques (regex rules and
several strategies) from existing methods. Several approaches
support analysis of partial programs [7], [51], [52]. Prior
framework resolves ambiguities in partial Java programs via
several heuristics [7]. Although several strategies are used to
improve accuracy of Codegex, it can analyze smaller programs
(programs with only one statement versus one class in prior
work [7]), and it is designed for bug pattern detection whereas
prior work is designed for type inference. The most relevant



work, µchex, performs bug detection on AST nodes built from
code snippet by sliding window and micro-grammars [51].
While it benefits from the strength of tree representation for
complex analysis (e.g. flow analysis), Codegex improves the
comprehensibility and ease of implementation of bug detection
rules based on text representation. Codegex did not compare
with µchex since it is not open-source.
Code Reviews. Prior automated code review approaches either
rely on deep learning for modeling code changes and review
comments [39]–[41], [53] or code reviewer recommenda-
tion [54], [55]. Although these techniques can potentially
discover new problems in given code changes, they are more
suitable for code review of mature projects where many PRs
and review comments exist. Codegex can handle any type of
projects, including new projects which do not have enough
review comments for training. Meanwhile, several studies have
shown the usefulness of static analysis in automated code
review [16], [17], [56], [57]. One of the most relevant works,
Review Bot, produces review comments based on the output
of static analyzers [18]. While Review Bot solves the compi-
lation requirement of SpotBugs using a workaround, Codegex
improves over SpotBugs via regex rules and heuristics to skip
compilation.
Regex-based approaches. Regex matching has been widely
used in many tasks (e.g., mutant generation [58] and detecting
security vulnerabilities [59]–[61]). In the security domain,
DevSkim is an IDE plugin [61] that uses regex rules for inline
checks of security vulnerabilities (e.g., invoking dangerous
API like strcpy). Regex rules cannot be directly used in
other domains to detect bug patterns in SpotBugs because
(1) a general-purpose analyzer may have rules that are not
domain-specific and may require more contexts for accurate
detection, and (2) these tools are not designed for checking
partial programs. While Codegex uses regex as its core for
analysis, it differs from existing approaches in several aspects:
(1) it uses strategies to improve effectiveness, and (2) it is more
general than domain-specific techniques that target security
vulnerabilities.

A. Threats to Validity

External. Our study and our evaluation results may not
generalize beyond the evaluated open-source Java projects. To
mitigate this threat, we include a large number of open-source
projects of diverse sizes. We also ensure that the projects used
in the two experiments (Section V) do not overlap. Since we
only evaluate on SpotBugs, our results may not generalize
to other static analysis tools (e.g., Infer [31]). During the
manual inspection of the generated warnings, two authors
of the paper reviewed the results independently and met to
resolve any disagreement. Moreover, whenever we found a
bug or an FN in SpotBugs, we confirmed its validity with the
developer by filing bug reports, leading to a total of 16 bug
reports. Furthermore, due to limited resources, we conduct
all experiments on a single machine. Although the initial
compilation time and subsequent compilation time depend on

the machine used and network latency, our results show that
the speedup that Codegex offers is quite substantial.
Internal. Our code and scripts may have bugs that could affect
our results. To mitigate this threat, we wrote tests for each
implemented pattern. Moreover, we evaluate the effectiveness
of Codegex in automated code review via developers’ feedback
as it is time-consuming to manually label each warning. We
mitigate this threat by manually analyzing each feedback.
Ethical considerations. In principle, it is straightforward
to extend Codegex to a bot automatically triggered after
submitting a new PR. However, to ensure reproducible results,
we first obtained a fixed list of open PRs, and then run
Codegex to generate review comments for each PR in the
list (i.e., our experiments only affect developers of the 372
PRs with review comments). Instead of spamming developers
by contacting them via survey [62], we evaluate whether
Codegex is ethical based on bot ethics [19] which checks
if the bot: (1) is lawbreaking, (2) involves deception, and
(3) violates social norms. To check for law breaking, we
(1) obtained ethical approval from the Institutional Review
Board (IRB) of our institute, and (2) manually checked the
contribution guidelines, and signed the Contributor License
Agreement (CLA) of each repository in the PR list (in most
CLAs, “submitted” includes any form of communications,
which covers code review comments). Overall, there are 31
projects with CLAs, and we have signed all of them. To avoid
deception, we did not hide the fact that the comments are sent
by a bot. In fact, six developers are aware that the comments
are sent by a bot (e.g., one developer replied to us saying
“good bot”). For (3), the fact that our bot achieves similar
accuracy as SpotBugs (a widely used tool) for many patterns
shows that our bot is beneficent [63] and did not “create more
evil than good”. Moreover, we also manually replied to 57
developers to discuss the analysis results.

IX. CONCLUSION

We present Codegex, a novel regex-based approach for effi-
cient static analysis. To perform fast yet accurate analysis, our
approach uses several heuristics to enrich the analysis contexts.
Our experiments that compare Codegex and SpotBugs show
that Codegex can analyze up to 590X faster than SpotBugs
with comparable accuracy. For automated code review, we
evaluate Codegex against 4256 PRs, and received 116 feed-
back where 78.45% are positive. Our experiments confirm the
two settings in which Codegex can enhance existing static
analyzers like SpotBugs, including: (1) acting as the fast stage
in a two-stage approach where more sophisticated analysis
can be run as part of a nightly build, and (2) supporting
incremental analysis that performs automated code review for
partial code in a PR without setting up build configurations.
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