
Automating CUDA Synchronization via Program
Transformation

Mingyuan Wu
Department of Computer Science and Engineering

Southern University of Science and Technology
Shenzhen, China

11849319@mail.sustech.edu.cn

Lingming Zhang
Department of Computer Science

University of Texas at Dallas
Dallas, USA

lingming.zhang@utdallas.edu

Cong Liu
Department of Computer Science

University of Texas at Dallas
Dallas, USA

cong@utdallas.edu

Shin Hwei Tan
Department of Computer Science and Engineering

Southern University of Science and Technology
Shenzhen, China

tansh3@sustech.edu.cn

Yuqun Zhang*
Department of Computer Science and Engineering

Southern University of Science and Technology
Shenzhen, China

zhangyq@sustech.edu.cn

Abstract—While CUDA has been the most popular paral-
lel computing platform and programming model for general-
purpose GPU computing, CUDA synchronization undergoes sig-
nificant challenges for GPU programmers due to its intricate
parallel computing mechanism and coding practices. In this
paper, we propose AuCS, the first general framework to automate
synchronization for CUDA kernel functions. AuCS transforms
the original LLVM-level CUDA program control flow graph in
a semantic-preserving manner for exploring the possible barrier
function locations. Accordingly, AuCS develops mechanisms to
correctly place barrier functions for automating synchronization
in multiple erroneous (challenging-to-be-detected) synchroniza-
tion scenarios, including data race, barrier divergence, and
redundant barrier functions. To evaluate the effectiveness and
efficiency of AuCS, we conduct an extensive set of experiments
and the results demonstrate that AuCS can automate 20 out of
24 erroneous synchronization scenarios.

Index Terms—CUDA, program repair, synchronization au-
tomation, program transformation

I. INTRODUCTION

CUDA [1] has recently become a dominating parallel com-
puting platform and programming model for general-purpose
GPU (GPGPU) computing [2], due to its advantages in (1)
simplifying I/O streams to memories and dividing computa-
tions into sub-computations by parallelizing programs in terms
of grids and blocks, and (2) enabling more flexible cache
management that speeds up the floating point computation
of CPUs. CUDA is thus considered rather powerful and
widely adopted in deep-neural-network-related applications for
efficiently processing relevant matrix computations.

Albeit its advantages in GPU computing, CUDA program-
ming undergoes significant challenges for GPU programmers
due to its specific parallel computing mechanism and coding
practices [3] [4] [5] [6]. Since CUDA-based GPU programs
enable synchronization which significantly differs from CPU

* corresponding author

programs by using barriers rather than locks [7] [8] and apply-
ing happens-before relations [9] [10], GPU programmers are
expected to be competent domain experts for delivering correct
program outputs with limited benefits from their knowledge
of traditional CPU programs. However, the synchronization
management skills of GPU programmers can be seriously
challenged. In particular, since massive parallelism in CUDA-
based GPU computing can be invoked by ballooning exces-
sive thread interleavings, any two from thousands of threads
accessing the same memory cell might trigger a data race and
lead to incorrect computation results which are somewhat hard
to be discovered by GPU programmers [4] [6]. Moreover,
programmers’ unawareness of using third-party programs/li-
braries of kernel functions can be another major reason to
cause program execution failures. For instance, a data race
can also be caused when programmers mistakenly delegate
synchronization to the third-party programs or libraries which
are not designed for such purpose [11]. Therefore, it is essen-
tial to assist GPU programmers by automating synchronization
of CUDA programs for effectively developing GPU programs.

In this paper, we propose AuCS which, to the best of our
knowledge, is the first general framework to automate LLVM-
level synchronization for CUDA programs in multiple erro-
neous synchronization scenarios. To be specific, we automate
CUDA synchronization in LLVM bitcode instead of source
code because (1) integrated as part of compiler optimiza-
tion [12], LLVM-level synchronization can be effective in
concealing programming details from GPU programmers such
that they can focus on delivering high-level program function-
alities, and (2) automating source code level synchronization
via patching can possibly deteriorate the source code with
inferior readability and maintainability.

We first specify the erroneous CUDA synchronization sce-
narios: (1) the data race scenario that occurs when program-
mers fail to implement synchronization inside kernel functions;
(2) the barrier divergence scenario that occurs when program-

mers implement incorrect synchronization to cause barrier di-
vergence inside kernel functions; and (3) the redundant barrier
function scenario that occurs when programmers implement
redundant synchronization inside kernel functions [13], [14].
Next, AuCS transforms the scenarios to be their corresponding
automatic bug repair problems and solves them in their LLVM-
bitcode level respectively. In particular, AuCS leverages a
LLVM-bitcode tool that automatically detects CUDA synchro-
nization bugs. Based on the detected CUDA bugs, AuCS ap-
plies a LLVM-level program transformation rule to transform
the original LLVM-bitcode control flow graph (CFG) while
preserving the original semantics. Our program transformation
is able to expose the possible barrier function locations in
the original program or create the potential barrier function
location when no such location exists in the original program.
As a result, AuCS develops a set of mechanisms to automate
synchronization under multiple synchronization scenarios, i.e.,
(1) correctly placing barrier functions for eliminating data race
and barrier divergence and (2) removing unnecessary barrier
functions after detecting the synchronization problem. Even-
tually, AuCS can automatically enable correct synchronization
in LLVM bitcode of CUDA kernel functions to alleviate the
concerns and cost from GPU programmers on implementing
correct synchronization in source code.

To evaluate the effectiveness and efficiency of AuCS on au-
tomating synchronization for CUDA programs, we conducted
a set of experiments based on a real-world benchmark which
consists of four GitHub projects with 24 erroneous synchro-
nization scenarios. Our experimental results suggest that AuCS
can effectively automate synchronization for CUDA kernel
functions by fixing 13 data race bugs, 5 barrier divergence
bugs, and 2 redundant barrier divergence bugs in their LLVM
bitcode in relatively short time.

In summary, our paper makes the following contributions:

• To the best of our knowledge, we develop the first general
framework, namely AuCS, that automates synchronization
for CUDA kernel functions by correctly placing barrier
functions in their corresponding LLVM bitcode.

• We introduce a set of program transformation rules that
automatically generate synchronization for CUDA pro-
grams at the LLVM-bitcode level. Our transformation
rules aim to preserve the semantics of the modified
programs.

• We evaluate AuCS under multiple experimental setups.
The results suggest that AuCS is able to automate syn-
chronization under most of the erroneous synchronization
scenarios in the studied projects under limited time cost.

The rest of the paper is organized as follows. Section II
introduces the background of this paper including CUDA
overview, parallel computing mechanism, synchronization bug
types, and LLVM bitcode. Section III introduces a motivating
example to illustrate the challenges on automating synchro-
nization for CUDA programs. Section IV demonstrates AuCS
including the proof for the semantic-preserving property of its
program transformation and the corresponding mechanisms

Grid

Block

.

.

.
.
.
.

Thread Thread

Thread Thread

Thread Thread

Block

.

.

.
.
.
.

Thread Thread

Thread Thread

Thread Thread

Fig. 1: CUDA Hierarchy

of automating synchronization under multiple scenarios. Sec-
tion V presents the evaluation on the effectiveness and effi-
ciency of AuCS. Sections VI to VIII present the related work,
threats to validity, and conclusions of the paper, respectively.

II. BACKGROUND

In this section, we give an overview on CUDA, the CUDA
parallel computing mechanism, typical CUDA synchroniza-
tion bugs, and the LLVM-level CUDA Synchronization Bug
Detection.

A. CUDA Overview and Parallel Computing Mechanism

CUDA provides a runtime library and an extended version
of C/C++ for GPU programmers such that they can use GPU
hardware for general-purpose computing. CUDA operates on
a heterogeneous programming model where it involves both
the CPU and GPU. In CUDA, the host refers to the CPU
and its memory, while the device indicates the GPU and its
memory [15].The device programs need to be allocated with
resources from host programs prior to execution. Eventually,
the allocated resources, e.g., global memory, need to be
retrieved after CUDA program execution. A typical CUDA
program contains three runtime stages: host resource prepa-
ration, kernel function execution, and host resource retrieval.
In particular, a kernel function refers to the part of CUDA
programs that is invoked during device execution and is the
focus of this paper.

Thread is the basic execution unit in kernel functions.
Specifically, in the physical level, a warp is a set of 32 threads,
all of which are expected to execute the same instruction at any
time, except when incurring branch divergence, while in the
logic level, CUDA imposes a hierarchy where a block contains
one or more threads, and a grid contains one or more blocks.

Kernel functions are executed by setting dimensions of
grids and blocks. These functions divide computation into
sub-computations and dispatch each sub-computation to dif-
ferent threads accordingly. Eventually, the results of sub-
computations can be merged as the final result of the overall
computation through applying algorithms such as reduction.
Figure 1 shows the hierarchy of the parallel computing mech-
anism of CUDA kernel functions.

1 t i d = t h r e a d I d x . x ;
2
3 i f (y > 0 && a < C)
4 f v a l 2 r e d u c e [t i d] = f ;
5 e l s e
6 f v a l 2 r e d u c e [t i d] = INFINITY ;
7 ++ __syncthreads(); / / f i x by ad d i ng s y n c t h r e a d s
8 / / g e t b l o c k m i n w i l l w r i t e d a t a t o f v a l 2 r e d u c e
9 i n t i p = g e t b l o c k m i n (f v a l 2 r e d u c e , f i d x 2 r e d u c e) ;

10 f l o a t up va lue p = f v a l 2 r e d u c e [i p] ;
11

Fig. 2: An Example of Data Race

1
2 s d i s t [s i d] = d i s t ;
3 s i d x [s i d] = s i d x [s i d + i] ;
4 / / removing t h e b a r r i e r f u n c t i o n n e x t l i n e
5 - - __syncthreads();
6 }
7 / / f i x by moving t h e b a r r i e r o u t .
8 ++ __syncthreads();
9 }

Fig. 3: An Example of Barrier Divergence

B. CPU Synchronization vs. CUDA Synchronization

Traditional CPU programs, e.g., Java programs, use a lock-
based mechanism to synchronize different threads. In particu-
lar, instead of accessing memory with other threads as a group
at the same time, a thread accesses a memory cell shared with
other threads by acquiring a lock from the memory cell. If the
lock is free, the thread obtains the lock, accesses the memory
cell, and continues executing the remain statements while other
threads have to enter pending state until the lock is released.
Otherwise, the thread enters pending state.

Different from CPU synchronization, CUDA synchroniza-
tion applies barriers to synchronize threads where all the
threads in one block must wait before any can proceed.
In particular, a barrier is represented as a barrier function
__syncthreads() in CUDA kernel functions. When a
thread reaches a barrier function, it is expected to proceed
to next statement if and only if all the threads from the same
block have reached the same barrier function.

C. CUDA Synchronization Bug Patterns

According to [16] [13], there are three major synchroniza-
tion bug types in CUDA kernel functions: data race, barrier
divergence, and redundant barrier function.

Data Race. Data race refers to that the visit order of
“read&write” actions or “write&write” actions from two
or more threads cannot be determined in CUDA pro-
grams. Figure 2 presents an example with bug-fixing Re-
vision no. “febf515a82” in the file “smo-kernel.cu”
of one highly-rated Github project “thundersvm” [17].
We can observe that the “if” statement writes to the
memory of “f_val2reduce”, meanwhile the function
“get_block_min” writes to the same memory inside the
device. This causes a “write&write” bug and could be fixed
by inserting “__syncthreads”.

1 i n t t i d = t h r e a d I d x . x ;
2 s median [t i d] = FLT MAX;
3 s i d x [t i d] = 0 ;
4 - - __syncthreads();
5

6 i f (i < i t e r a t i o n s) { . . .
7 s i d x [t i d] = i ;
8 s median [t i d] = m;
9 }

Fig. 4: An Example of Redundant Barrier Function

Barrier Divergence. A barrier divergence occurs when
more than one threads belonging to the same block complete
their tasks and leave the barrier while some other threads in
the same block have not reached the barrier yet. A sample
barrier divergence can be found in the bug-fixing Revision no.
“0ed6cccc5ff” in the file “nearest_neighbour.hpp”
from the project “arrayfire” presented in Figure 3, where
it can be observed that all the threads in the same block are en-
sured to reach the same barrier in every execution of the kernel
function by moving the statement of “__syncthreads()”
outside the given branch.

Redundant Barrier Function. A barrier function is de-
fined to be redundant when no data race is triggered after
deleting it. A redundant barrier function can result in the
inferior program performance in terms of time and memory
usage. For instance, a sample redundant barrier function can
be found in the bug-fixing Revision no. “31761d27f01”
in the file “kernel/homography.hpp” from the project
“arrayfire” [18] presented in Figure 4. We can observe
that the associated block is one-dimensional since from Line 1,
the value of “tid” is assigned only from “threadIdx.x”.
Moreover, the “tid”s are identical among different threads
from the same block. Therefore, only one thread is allowed
to access “s_median[tid]” and “s_idx[tid]”, leading
to a redundant barrier function in Line 4 since no race can
be triggered in “s_median” or “s_idx” after deleting the
barrier function.

D. LLVM-level CUDA Synchronization Bug Detection

Low level virtual machine (LLVM) is a compiler framework
for program analysis and transformation of source code, where
LLVM bitcode is a low-level code representation in Static
Single Assignment (SSA) form [19]. In particular, LLVM
bitcode includes the following novel features: (1) language-
independent type system, (2) type-conversion and low-level
address arithmetic instructions, and (3) low-level exception
handling instructions.

Simulee [13] is a LLVM-level CUDA synchronization bug
detection tool. In particular, it first uses Evolutionary Pro-
gramming [20] to automatically generate the input for ker-
nel functions that can trigger CUDA synchronization bugs.
Next, by simulating kernel function execution with the bug-
inducted input, Simulee detects synchronization bugs and the
associated locations in the original program. Moreover, there
are other synchronization bug detection approaches for CUDA

programs, e.g., GPUVerify [21], CIVL [22] and ESBMC-
GPU [23], which are designed for source-code-level other than
LLVM-bitcode-level synchronization bug detection.

In this paper, we use Simulee to detect CUDA synchroniza-
tion bugs for automating CUDA synchronization because (1)
it can detect multiple bug types including data race, redundant
barrier function, and barrier divergence automatically; and (2)
it can simulate runtime CUDA programs without incurring
much overhead for extra processing (e.g., searching), which
makes it more efficient than the static/dynamic-analysis-based
approaches that usually demand large search space [13].

III. MOTIVATING EXAMPLE

In this section, we use a sample code snippet to illustrate
why automating synchronization is beneficial and challenging
for developing CUDA kernel functions. In particular, the sam-
ple code snippet is chosen from GkleeTest [24] and presented
in Figure 5 while its corresponding LLVM bitcode is presented
in Figure 6 and its control flow graph (CFG) is presented in
Figure 7.

Assuming the grid dimension is [1, 1, 1] and the block
dimension is [5, 1, 1], it can be derived that the code snippet
in Figure 5 introduces a data race bug between lines 8 and
10 when executing the kernel function. Specifically, when
num_elements is set to 5, thread (0 0 0)(1 0 0) writes data
to input_array[1] while thread (0 0 0)(0 0 0) reads data
from input_array[1], and thread (0 0 0)(3 0 0) writes
data to input_array[3] while thread (0 0 0)(2 0 0) read
data from input_array[3]. Correspondingly in its LLVM
bitcode, such race takes place between Label 15 and Label 21
in Figure 6.

Data race in CUDA programs can be fixed by adding barrier
functions. For instance, in Figure 5, since the data race takes
place in different branches, a barrier function should be added
into one of the branches, e.g., either Label 15 or Label 21
in Figure 6. However, it would lead to barrier divergence. To
illustrate, in Figure 6, by adding a barrier function in Label
15, the thread that executes Label 21 would never reach that
barrier function, and vice versa.

To conclude, a complete automatic synchronization mecha-
nism for CUDA kernel functions can be challenging because it
should not only automatically detect and fix the existing syn-
chronization bugs in the original CUDA kernel functions, i.e.,
data race, barrier divergence, and redundant barrier functions,
but also avoid potential barrier divergence caused by adding
barrier functions for fixing data race. Hence, we formulate the
automatic synchronization problem for CUDA programs as a
problem of identifying the correct locations for placing barrier
functions. In this example, a barrier function is expected to be
added in the Basic Block between Label 15 and Label 21,
if there is any, to fix the data race without causing barrier
divergence for automating synchronization for CUDA kernel
functions. However, since no such Basic Block exists, fixing
this data race remains challenging.

IV. APPROACH

In this section, we propose AuCS, a general framework
that automatically synchronizes CUDA kernel functions. Since
automating synchronization for CUDA kernel functions is
essentially locating barrier functions properly, how to locate
barrier functions properly is the key process. In AuCS, we
first propose a program transformation rule to transform
LLVM-bitcode CUDA programs (LLVMcuda) for identifying
barrier function locations and provide proofs for ensuring
its semantic-preserving property. Next, we demonstrate how
AuCS leverages our transformed LLVMcuda to automate syn-
chronization for CUDA kernel functions.

A. Program Transformation

Based on the CFG concepts, it can be derived that a barrier
function should only be placed in a proper basic block of the
program for correct execution without incurring synchroniza-
tion bugs. Specifically, correctly placing barrier function is
equivalent to detecting whether there exists such basic block
and, if not, whether it is possible to create such basic block.
Moreover, it is essential to preserve the original semantics
after such program simplification. For instance, in Figure 7,
with a semantic-preserving program structure simplification
approach, we can generate a basic block between Label 15 and
Label 21 by changing the original CFG for placing a barrier
function to fix the data race without changing the original
program semantics.

In the following, we propose a semantic-preserving pro-
gram transformation approach for correctly placing barrier
functions. Specifically, we first list a set of definitions for
constructing LLVMcuda CFGs. Next, based on the definitions,
we propose a set of program transformation rules. At last, we
prove that such program transformation rules are semantic-
preserving.

1) Definition:
• Label refers to LLVM-bitcode label which is a set with

multiple statements of LLVM-bitcode programs corre-
sponding to CUDA kernel functions. Each statement
belongs to a Label. Different Labels are connected by
“br” instructions, as presented in Figure 9. In particular,
Label is the fundamental component for CFG which
contains multiple LLVM instructions in LLVM bitcode
such that the original CUDA program semantics can be
maintained in LLVM bitcode.

• Stable Label is a Label which does not contain any
“write” instruction.

• Branch Graph is a directed acyclic graph that represents
a LLVM bitcode program without Loop Edges. Its nodes
and edges are the same as in a LLVM-bitcode CFG,
except for Loop Edges.

• Execution Path refers to a single thread’s Label sequence
in a complete execution of a CUDA kernel function. Note
that the intersection of two Execution Paths is a set of
Labels belonging to both Execution Paths.

• Loop Edge refers to a transition relation between two La-
bels. Suppose there is an Execution Path ρ = [α, ..., β, α]

1 g l o b a l vo id d e v i c e g l o b a l (u n s i g n e d i n t * i n p u t a r r a y ,
2 i n t num elements) {
3 i n t my index = b l o c k I d x . x * blockDim . x + t h r e a d I d x . x ;
4 / / s t o p o u t o f bounds a c c e s s
5 i f (my index < num elements) {
6

7 i f (my index%2 == 1) {
8 i n p u t a r r a y [my index] = my index ;
9 } e l s e {

10 i n p u t a r r a y [my index] = i n p u t a r r a y [my index + 1] ;
11 }
12 }
13 }

Fig. 5: C++ version for GkleeTest Example

1 d e f i n e vo id @ Z 1 3 d e v i c e g l o b a l P j i (i 3 2 * %i n p u t a r r a y ,
2 i 3 2 %num elements) {
3 %1 = a l l o c a i 3 2 * , a l i g n 8 . . .
4 br i 1 %10, l a b e l %11, l a b e l %33
5 ; <l a b e l >:11 . . .
6 br i 1 %14, l a b e l %15, l a b e l %21
7 ; <l a b e l >:15 . . .
8 br l a b e l %32
9 ; <l a b e l >:21 . . .

10 br l a b e l %32
11 ; <l a b e l >:32
12 br l a b e l %33
13 ; <l a b e l >:33
14 r e t vo id
15 }

Fig. 6: LLVM version for GkleeTest Example

Entry End

Label 15

Label 33Label 0

Label 11

Label 21

Label 32

Fig. 7: Topological Structure of LLVM

where the first α is executed before than the first β. The
transition from β to α is defined as a Loop Edge.

• Basic Block is a Label that intersects all the possible
Execution Paths of a CUDA kernel function.

• Program State is a key-value dictionary structure that
records all the states of a CUDA kernel function, where
the keys refer to the variables’ names and the values refer
to their corresponding runtime values.

• Entry Condition is a boolean expression for a single
Label. If an Execution Path satisfies Entry Condition,
it would contain its corresponding Label. The value of
Entry Condition is computed by one or more variables in
Program State.

• Branch-Independent is a relation between two different
Labels. Suppose that we have one Label named α, the
other Label named β. If there is no path from α to β and
no path from β to α in their Branch Graph, then α and
β are defined to be Branch-Independent.

• Semantic-Independent
Suppose that there are two different Execution Paths
named ρ1 and ρ2, if ρ1 ∩ ρ2 = ρ2 and their difference
set ρ1−ρ2 does not contain any “write” instruction, then
ρ1 and ρ2 are defined to be Semantic-Independent. For
instance, assume that ρ1 = [a, b, c, d, e] and ρ2 = [a, c, e].
It can be derived that ρ1 − ρ2 = [b, d]. Assuming that b
and d do not contain any “write” instruction, ρ1 and ρ2
are Semantic-Independent.

We adopt the small-step operational semantics for
LLVMcuda from GKLEE [5]. Figure 8 presents an excerpt of
our modification on the LLVMcuda syntax which are Current
Label and Entry Condition. Figure 9 shows the corresponding

Program State := Σ(var 7→ value)

Current Label := P(Label)

Entry Condition := C

Fig. 8: Syntax for modified LLVMcuda

stmt = br Pi

(Σ,P)→t (Σ,P(Label) 7→ Pi)
(1)

stmt = br Ci Pi Pj Σ ` Ci

(Σ,P)→t (Σ,P(Label) 7→ Pi)
(2)

stmt = br Ci Pi Pj Σ ` ¬Ci

(Σ,P)→t (Σ,P(Label) 7→ Pj)
(3)

Fig. 9: LLVMcuda Transition Rules For Label

operational semantics for the LLVMcuda transition rules. In
particular, Current Label refers to the Label executed by the
current program counter. When statement “br Pi” is executed,
the Current Label is changed to “Pi” without any condition
according to Rule 1. In Rule 2 and Rule 3, if Entry Condition
“Ci” is true, Current Label is changed to “Pi”, otherwise “Pj”.

2) Program Transformation: LLVMcuda transformation is
initialized by deriving the topological sorting of the Branch
Graph. Accordingly, the original CFG is restructured by
adding one Basic Block between two topologically-adjacent
Labels with setting their edges based on Figure 9.

The details of the program transformation are presented
in Algorithm 1, where delete_edge_without_loop
deletes the edges of the given Label except Loop Edges,
set_condition_edge creates a conditional edge between
Labels according to Rule 2 and Rule 3 in Figure 9, and
set_edge creates a non-conditional edge between Labels
according to Rule 1 in Figure 9. Specifically, program trans-
formation is initialized to obtain a topological ordering of
“branch graph” at line 2. Next, each Label is parsed as
topological ordering at line 4. In line 5, the Entry Condition
is resolved for the Current Label followed by deleting the
original edges of each Label except Loop Edges at line 7. From

Entry EndA DB

C

Entry End

A B C D

 Basic Block created by Algorithm 1

(a) Before Transformation

Entry EndA DB

C

Entry End

A B C D

 Basic Block created by Algorithm 1

(b) After Transformation

Fig. 10: An Example of Program Transformation

Algorithm 1 Transformation
Input : branch graph, graph, conditions
Output:graph

1: function TRANSFORMATION
2: topology ← topological sort(branch graph)
3: previous node ← Label()
4: for each label in topology do
5: enter condition ← conditions[each label]
6: next node ← Label()
7: delete edge without loop(each label, graph)
8: set condition edge(previous node, enter condition,
9: each label, graph)

10: set condition edge(previous node, !enter condition,
11: next node, graph)
12: set edge(each label, next node, graph)
13: previous node ← next node
14: return graph

line 8 to line 13, the current Label generates a new predecessor
Label with a Entry Condition-satisfaction edge pointing to it
and a new successor Label with a Entry Condition-satisfaction
edge pointed from it. In addition, the generated predecessor
Label points to the generated successor Label with a Entry
Condition-dissatisfaction edge. For instance, an example of
program transformation is demonstrated in Figure 10 where
Figure 10(a) and Figure 10(b) both refer to the identical CFG.
The circle nodes in Figure 10(a) represent the original Labels
before program transformation and the rectangle nodes in
Figure 10(b) represent the generated Labels after program
transformation.

Algorithm 1 is input with the function for extracting Entry
Condition for each Label demonstrated in Algorithm 2 which
is initialized by a Branch Graph and an empty dictionary in
which Label is a key and a Entry Condition which is the
corresponding value. The Entry Condition for each Label is
generated according to Rule 4 and Rule 5. In Rule 4, Ai refers
to the boolean-expressions set owned by i-th predecessors of
label. In Rule 5, ai refers to a single boolean expression

Algorithm 2 Construct Label Conditions
Input : branch graph
Output: condition dict

1: function CONSTRUCT CONDITION
2: topology ← topological sort(branch graph)
3: cond ← dict()
4: for each label in topology do
5: labels ← find pre label(each label)
6: cond lst ← list()
7: for label ∈ labels do
8: if label transmits condition to each label then
9: cond lst.append(cond[label] ∪ condition)

10: else
11: cond lst.append(cond[label])
12: for each cond ∈ cond lst do
13: if cond[each label] is empty then
14: cond[each label] ← each cond
15: cond[each label] ← cond[each label] ∩ each cond
16: for each label ∈ cond do
17: final cond ← empty logic expression
18: for condition ∈ cond[each label] do
19: final cond ← final cond ∧ condition
20: cond[each label] ← final cond
21: return cond

belonging to cond[label]. Algorithm 2 is initialized with
collecting boolean expressions for each Label according to
Rule 4. Then the Entry Condition for each Label is generated
by Rule 5. From line 4–15, the cond[each_label] of each
Label is constructed based on Rule 4, and the Entry Condition
for Labels is generated based on Rule 5 from line 16–20,
where find_pre_label in line 5 is implemented to find
all the predecessors of the given Label. Consider the example
in Figure 7. Suppose that the “br” instruction of Label 0
is based on a boolean expression γ0, when γ0 is true,
Label 0 transits to Label 11. Thus, the cond[Label
11] = {γ0}. Suppose that the “br” instruction of Label
11 is based on a boolean expression γ1, Label 11 tran-
sits to Label 15 when γ1 is true, otherwise transits to
Label 21. As a result, the cond[Label 15] = {γ0,
γ1} and cond[Label 21] = {γ0, ¬γ1}. Therefore, us-
ing Rule 4, we obtain cond[Label 32] by cond[Label
21]∩cond[Label 15] = {γ0}. And the Entry Condition
for Label 32 is γ0 based on Rule 5.

cond[label] =

m⋂
i=1

Ai, m = predecessor number (4)

EnterCondition[label] =

n∧
i=1

ai, n = |cond[label]| (5)

3) Semantic-Reserving Theorems: In this section, we pro-
pose and prove two theorems to validate that our program
transformation is able to preserve the semantics of the original
program where Theorem 1 is the basis of Theorem 2.

Theorem 1. Given a LLVMcuda CFG φ and its Branch Graph
ϕ, if two Labels are Branch-Independent in ϕ, their Entry

Conditions cannot be both true.

Proof. The proof will be done by contradiction. Consider
two Labels α and β from ϕ which are Branch-Independent,
for the lowest common ancestor θ of α and β, there exists
a boolean variable γ for θ. When γ is true, α is defined
to be added into Execution Path, otherwise β is defined to
be added into Execution Path. Suppose that α and β have
the same Entry Condition. This indicates that there exists at
least one descendant Label of θ which reassigns γ. Since
LLVM static single assignment (SSA) form enforces that each
variable is only assigned once in a single Label, this leads
to a contradiction. Thus, if two Labels α and β are Branch-
Independent in ϕ, their Entry Conditions cannot be both true.
Therefore, Theorem 1 holds.

Theorem 2. Given a LLVM bitcode CFG φ, for each Execu-
tion Path in φ, there exists a Semantic-Independent Execution
Path contained in the generated CFG ϕ by program transfor-
mation given φ and its Branch Graph as input.

Proof. We prove that Theorem 2 holds by induction on the
number of Labels (numLabel). For numLabel=1, this is the
case where there is an Execution Path ρ1 generated from φ
with one Label whose initial Entry Condition is γ1. Accord-
ingly, an Execution Path ρ2 with two Labels can be generated
in CFG ϕ by passing γ1 to CFG ϕ where one Label is a Stable
Label created by program transformation and the other is the
Label in ρ1. As ρ2 contains a Stable Label without “write”
instruction and the only Label of ρ1. Therefore, ρ1 and ρ2
satisfy the conditions of being Semantic-Independent.

Suppose that Theorem 2 holds for numLabel=n-1. For
numLabel=n, this is the case where there exists an Execution
Path ρ1 generated from φ with n Labels and the Program
State at the (n-1)-th Label is ε. As Theorem 2 holds when
numLabel=n-1, an Execution Path ρ2 is Semantic-Independent
with ρ1’s n-1 previous Labels. Accordingly, ε is contained
in ρ2 and Program State is the same between ρ1 and ρ2
before ε. Therefore, if ε has a Loop-Edge jump, according
to program transformation, such Loop Edge is reserved in ϕ
with the identical successor Label in both ρ1 and ρ2 according
to Rule 1. On the other hand, if ε does not have a Loop-
Edge jump, the successor Label of ρ2 can be determined either
from the Labels it points to or the Branch-Independent Labels.
Suppose that the successor Label in ρ1 is ε1, since the current
Program State of ρ2 is the same as ρ1, ε1’s Entry Condition in
ρ2 is also satisfied. Thus, ε1 can be one successor Label in ρ2
according to Rule 2. As a result, it can be ensured that there
are only Basic Blocks generated by program transformation
between ε and ε1 because if there exists any other Label
between ε and ε1 in ϕ, then it must be Branch-Independent
with ε1. According to theorem 1, their Entry Conditions
cannot be both true and according to Rule 3, the Basic Block
generated by program transformation is always selected when
the other choice is Branch-Independent. The final state for
this situation is presented at Figure 11. Therefore, all the
elements of the difference set ρ2−ρ1 are Stable Labels. Hence,

ρ2 and ρ1 are Semantic-Independent for numLabel=n. Thus,
Theorem 2 is true.

ρ1 =
[
α, β, . . . , ε, ε1

]
ρ2 =

[
α, �, . . . ,�︸ ︷︷ ︸

Basic Block

, β, . . . , ε,�, . . . ,�︸ ︷︷ ︸
Basic Block

, ε1
]

Fig. 11: If ε does not have a Loop Jump to ε1

To conclude, it can be derived that by applying the program
transformation rule, we are able to transform the original
complex CFG structure by generating Basic Block with Stable
Labels while preserving the original semantics. Therefore, to
properly locate barrier functions, the original CUDA kernel
functions can be transformed to be to properly locate barrier
functions in the generated Stable Labels.

B. Overall framework of AuCS

Figure 12 presents the overall framework of AuCS. AuCS
is initialized by compiling CUDA kernel functions to LLVM
bitcode and using Simulee to detect synchronization for such
LLVM bitcode. In particular, a data race bug is reported as
a pair of statements executed by different threads. Barrier
divergence bugs and redundant barrier function bugs are
reported with the locations of their associated buggy barrier
functions.

Next, AuCS transforms the original program based on
program transformation rules. In particular, AuCS “flattens”
the original LLVM bitcode by adding extra Stable Labels.
For data race bugs, AuCS provides a mechanism to find the
appropriate Stable Label for placing barrier functions. For
barrier divergence bugs, AuCS first removes the buggy barrier
functions and then applies the mechanisms for handling data
race for properly placing barrier functions. For redundant
barrier functions, based on the Memory Model generated
from Simulee, AuCS detects and removes all redundant barrier
functions in given kernel function.

At last, AuCS automatically captures the erroneous synchro-
nization in LLVMcuda and fixes them.

1) Recognizing Synchronization Bugs: Based on the afore-
mentioned definitions in Section IV-A1, CUDA synchroniza-
tion bugs can be depicted as follows.
• Data race can occur in an intra-Label and inner-Label

manner. Specifically, the statements which incur data
race bugs can be grouped as inner-Label statements
where such statements belong to the identical Label, and
intra-Label statements where such statements belong to
different Labels.

• Barrier divergence is only possible to occur when a
barrier function is located in a non-Basic Block Label.

2) Automating Data Race Scenarios: Since it is possible
to incur barrier divergence by adding barrier functions to fix
data race as in Section III, AuCS attempts to fix data race
without incurring barrier divergence for both inner-Label and
intra-Label data-race-inducted statements.

Fig. 12: Overview of AuCS

Algorithm 3 Auto Synchronization For Data Race
Input : label 1, label 2, branch graph B, graph G
Output:graph

1: function AUTO SYNC RACE
2: topology ← topological sort(B)
3: if label 2 <topology label 1 then
4: swap(label 1, label 2)
5: if label 1 is Basic Block then
6: add barrier at label 1
7: return graph
8: if label 2 is Basic Block then
9: add barrier at label 2

10: return graph
11: predecessor 1 ← find basic predecessor(label 1, B)
12: successor 1 ← find basic successor(label 1, B)
13: predecessor 2 ← find basic predecessor(label 2, B)
14: successor 2 ← find basic successor(label 2, B)
15: if successor 1 6= successor 2 then
16: add barrier at successor 1
17: return graph
18: sub br ← extract graph(B, predecessor 1, successor 1)
19: sub graph ← extract graph(G, predecessor 1, successor 1)
20: cond ← CONSTRUCT CONDITION(sub br)
21: sub graph ← TRANSFORM(sub br, sub graph, cond)
22: replace original graph(G, sub graph, successor1)
23: insert barrier at the new predecessor Basic Block of label 2
24: return graph

Intra-Label statements. For a data race incurred among
intra-Label statements, AuCS first sorts the execution order
of the two associated labels. Next, it identifies their respective
predecessor and successor Basic Blocks. AuCS would deter-
mine if it needs to apply program transformation based on
whether the two Labels share the identical predecessor/suc-
cessor Basic Blocks. Lastly, AuCS adds barrier functions ac-
cordingly. We introduce the details of this mechanism in Algo-
rithm 3, where find_basic_predecessor is used to find
the predecessor Basic Block, find_basic_successor is
used to find the successor Basic Block of the given Label,
and extract_graph extracts the sub graph from the given
original graph bounded by two given Labels.

Specifically, Algorithm 3 is initialized by inputting two
Labels “label 1”, “label 2”, Branch Graph “branch graph”,
and CFG “graph”. In lines 2–4, assuming that “label 1” is
ensured to happen before “label 2”, if “label 1” or “label 2”

is a Basic Block, we can add barrier functions directly without
incurring barrier divergence in lines 5–10 according to Section
IV-B1. On the contrary, the predecessor and successor Basic
Block for “label 1” and “label 2” can be found in lines 11–14.
Specifically in lines 15–17, if the predecessor and successor
Basic Block are not identical, we can add barrier function
at the nearest Basic Block after “label 1” to synchronize
the program. Otherwise, if the predecessor and successor
Basic Block are identical, AuCS extracts the associated sub
CFG and sub Branch Graph in lines 18–19 according to the
given predecessor and successor Basic Block, and constructs
Entry Conditions for each Label in the extracted sub CFG in
line 20. Next, it applies program transformation to the sub
CFG in order to create a Basic Block between “label 1” and
“label 2” in lines 21–23. As a result, adding a barrier function
in the Stable Label generated by program transformation
can automate synchronization of CUDA kernel functions by
eliminating data race bugs.

Inner-Label statements. When the data-race-induced state-
ments are in the same Label, AuCS splits the original Label
at the first statement into two Labels and transfer the original
inner-Label data race to intra-Label data race which can be
fixed by applying Algorithm 3.

Note that so far AuCS is not designed for the synchro-
nization scenario where different threads are executed under
different iterations for the same loop. Please refer to more
details discussed in Section V.

3) Automating Barrier Divergence Scenarios: Automati-
cally fixing barrier divergence bugs is expected to be intricate
because barrier divergence is highly involved with data race.
Specifically, an intuitive solution is to simply remove the
barrier functions in which the barrier divergence takes place.
However, since a barrier divergence bug indicates possible
data race bugs among different non-Basic Block Labels, it
is possible that deleting the barrier function might introduce
a new data race bug into the program. On the other hand,
manually fixing data race might lead to a barrier divergence
bug while the data race bug takes place in a non-Basic Block.
For instance, revision d88e6a3540f of “arrayfire” [25] tried to
fix data race but incurred additional barrier divergence, which
was fixed in 0d0d7d1285a [26].

AuCS, on the other side, enables an effective solution for
fixing barrier divergence by transforming it to automatically
fixing data race. In particular, AuCS first deletes all the barrier
functions that cause barrier divergence reported by Simulee.
Next, Simulee is called again to check whether there is any
data race. If not, it indicates that the barrier divergence is
already fixed; otherwise we can apply the approach IV-B2 to
fix the generated data race bugs.

4) Automating Redundant Barrier Function Scenarios: To
fix the redundant barrier function bugs, AuCS applies Simulee
to effectively detect the locations of the unnecessary barrier
functions and remove them.

Overall, by applying Simulee and the program transfor-
mation for “flattening” the original program CFG, AuCS can
effectively detect the synchronization bugs, identify/create the

proper locations for adding barrier functions to fix various
erroneous synchronization scenarios. Therefore, AuCS can
automate synchronization for LLVM bitcode of CUDA kernel
functions such that the developers could save time and effort
in fixing all erroneous synchronization scenarios.

C. Validation

Algorithm 3 applies program transformation to the erro-
neous synchronization scenarios, and inserts barrier functions
in discovered/created Basic Blocks. According to Theorem 2,
the original program semantics remain unchanged.

We invoke Simulee to validate the LLVM bitcode generated
by AuCS to check if the synchronization bug has been fixed.
It is essential to consider whether adding barrier function to
CUDA programs can inject barrier divergence bugs; in fact,
since barrier functions are always inserted in Basic Blocks that
are executed by all the threads according to the definition of
Basic Block, no new synchronization bug can be introduced
into the original LLVMcuda within the scope of this paper.

V. EXPERIMENTAL EVALUATION

In this section, we conduct a set of experiments to eval-
uate the effectiveness and efficiency of AuCS. We select all
the erroneous synchronization scenarios including data race,
barrier divergence, and redundant barrier function from Gklee
benchmark [24] and three real-world popular CUDA projects
from Simulee dataset [27]: arrayfire (5143 stars, 8419 commits
and 364K LoC), kaldi (2499 stars, 5171 commits and 381K
LoC), thundersvm (818 stars, 790 commits and 343K LoC).
Such studied projects were systematically selected in prior
work [13], [27].

A. Experimental Setup

We performed our evaluation1 on a desktop machine, with
Intel(R) Xeon(R) CPU E5-4610 and 320 GB memory. The
operating system is Ubuntu 16.04. We use the default values
for all the parameters for running Simulee.

B. Result Analysis

Table I shows the experimental results, where the first
three columns are used to identify the specific erroneous
synchronization scenarios. The next two columns present the
bug types and the automatic synchronization results performed
by AuCS. The following column shows whether it is feasible
for AutoSync [14] to automate synchronization. We split the
execution time into two parts in the last two columns: the
detection cost and automatic synchronization cost. For each
automatic erroneous synchronization scenario, we use both
Simulee and manual analysis to confirm whether the relevant
synchronization bug is fixed or not. In particular, the manual
analysis is used to observe whether the generated LLVM
bitcode is semantically equivalent with the corresponding
patch committed by developers.

1please refer to https://github.com/aucs2019/AuCS for AuCS details.

1 s h a r e d f l o a t shrdMem [5 1 2] ;
2 f l o a t * desc = shrdMem ;
3 . . .
4 i f (f < t o t a l f e a t) {
5 c o n s t i n t h i s t l e n = 1 6 ;
6 c o n s t i n t h i s t o f f = (t i d x % h i s t s z) * d e s c l e n ;
7 . . .
8 f o r (i n t i = t i d x ; i < h i s t l e n * h i s t s z ; i += bsz x)
9 desc [t i d y * h i s t l e n + i] = 0 . f ;

10 s y n c t h r e a d s () ; / / b a r r i e r d i v e r g e n c e
11 . . .
12 f o r (i n t l = t i d x ; l < d e s c l e n * 2 ; l += bsz x)
13 desc [l] += desc [l +2* d e s c l e n] ;
14 s y n c t h r e a d s () ; / / b a r r i e r d i v e r g e n c e
15 f o r (i n t l = t i d x ; l < d e s c l e n ; l += bsz x)
16 desc [l] += desc [l + d e s c l e n] ;
17 . . .
18 } . . .

Fig. 13: Simplified revision ee4d0bd77d7 for arrayfire

1) Effectiveness: First we apply AuCS to a total of 24
erroneous synchronization scenarios from the selected dataset.
AuCS can successfully automate synchronization for 20 of
them from Table I. Specifically, AuCS can successfully re-
solve difficult erroneous synchronization scenarios. e.g., the
motivating example in section III.

Fixing data race bugs manually may introduce new barrier
divergence bugs. For instance, the revision d88e6a3540f of
arrayfire attempted to fix a data race bug but incurred an addi-
tional barrier divergence bug, which was fixed in a subsequent
revision 0d0d7d1285a. In contrast, our experiment shows that
AuCS is able to successfully synchronize LLVMcuda in one
step fully automatically without causing barrier divergence.

Additionally, AuCS can also automate more erroneous syn-
chronization scenarios compared to AutoSync which uses a
cost model to select an optimal placement for the barrier
function. Such approach cannot fix either the motivating exam-
ple in Section III or the erroneous synchronization scenarios
when there is no Basic Block between buggy statements
which frequently occur in real-world projects. For example, the
revision ee4d0bd77d7 of arrayfire is presented in Figure 13.
The barrier function should be inserted at lines 11 and 15 to
synchronize data. Meanwhile, because the statements between
line 6 and line 17 do not belong to any Basic Block and they
are inside an if block, there should not be any barrier function
inside this block. Otherwise a barrier divergence bug would be
introduced. Since AutoSync cannot restructure code, it cannot
fix this bug by inserting barrier functions into the original
code. In addition, AutoSync cannot fix a read-write single-
statement data race such as a[i] += a[i + 1], because
a barrier function cannot be inserted within a single statement.
However, it can be resolved by AuCS because AuCS can
translate such statement into two independent instructions in
LLVMcuda and further resolve it. Specifically, the sixth column
of Table I shows if a synchronization scenario is beyond the
search space of AutoSync. It can be observed that 11 of 24
erroneous synchronization scenarios are beyond the search
space of AutoSync.

We can observe that there are four erroneous synchro-

TABLE I: Evaluation Results

Project Revision Kernel Function Bug Type AuCS (This work) AutoSync [14] Feasibility Detection Time Cost(s) AuCS Time Cost (s)
GkleeTests 10eb6373d53 device global data race 3 7 1.35 0.003
GkleeTests 10eb6373d53 colonel data race 7 7 1.27 N/A
GkleeTests 10eb6373d53 dl@deadlock 0 barrier divergence 3 7 3.96 0.025
GkleeTests 10eb6373d53 dl@deadlock 2 barrier divergence 3 3 3.65 0.001

arrayfire 0a8371a876b computeEvalHomography data race 3 3 14.49 0.013
arrayfire a7a297ba814 scan nonfinal kernel data race 3 3 4.236 0.021
arrayfire a7a297ba814 scan dim nonfinal kernel data race 3 3 1.773 0.023
arrayfire 0c5a38182b7 hamming matcher data race 3 3 12.90 0.023
arrayfire 0c5a38182b7 hamming matcher unroll data race 3 3 9.934 0.020
arrayfire d7abcf2358e JacobiSVD data race 3 3 17.11 0.029
arrayfire c59116e3ec3 warp reduce data race 3 3 4.215 0.014
arrayfire a515b112076 scan dim kernel data race 3 3 1.97 0.036
arrayfire d88e6a3540f warp reduce data race 3 3 4.81 0.029
arrayfire 1050816e422 hamming matcher data race 3 7 15.89 0.305
arrayfire 1050816e422 hamming matcher unroll data race 3 7 28.24 0.368
arrayfire 0ed6cccc5ff select matches barrier divergence 3 3 3.036 0.017
arrayfire dfbfca5fb77 select matches barrier divergence 7 7 4.56 N/A
arrayfire 0e0c726d7d0 hamming matcher unroll barrier divergence 7 7 12.45 N/A
arrayfire ee4d0bd77d7 computeDescriptor barrier divergence 3 7 23.31 0.055
arrayfire 0d0d7d1285a warp reduce barrier divergence 3 3 3.92 0.029
arrayfire 31761d27f01 computeMedian redundant barrier function 3 7 5.22 0.017
arrayfire faefa30c3a0 harris response redundant barrier function 3 7 2.21 0.028

kaldi bc13196e7fe add diag mat mat barrier divergence 7 7 8.53 N/A
thundersvm febf515a826 nu smo solve kernel data race 3 3 6.55 0.071

nization scenarios that AuCS cannot resolve. In particular,
for the revision 10eb6373d53 from GkleeTests, the data race
in the kernel function “colonel” is a single-instruction race
which is a write-write data race that incurs at the same
LLVM-bitcode instruction. Such scenario cannot be resolved
by inserting barrier function. The revision bc13196e7fe of
kaldi, dfbfca5fb77 and 0e0c726d7d0 of arrayfire are another
set of synchronization scenarios that cannot be resolved by
AuCS. In those scenarios, different threads execute the same
loop with different number of iterations. Meanwhile, a barrier
function should be put inside the loop to synchronize data
because of data race. Under such settings, even if the barrier
function is located in the Basic Block inside the loop, when
some threads complete fewer iterations than others, they would
leave the loop while other threads have not completed the
loop. Therefore, that incurs barrier divergence. Nevertheless,
AutoSync cannot fix any of those synchronization bugs either.

2) Efficiency: We can observe from Table I that the de-
tection part from Simulee is the most time-consuming part.
Taking into account the detection time, the average time cost
for the whole process is 8.21s. Meanwhile, the average time
cost for automatic synchronization is 0.056s, which occupies
only 0.686% of the total time cost (calculated as the time
cost of AuCS devided by detection-inclusive total time cost).
The max time cost for automatic synchronization is 0.368s.
Overall, our results show that AuCS can generate suitable
LLVM-bitcode patches for real-world projects rapidly.

VI. THREATS TO VALIDITY

In terms of external threat to validity, the effectiveness
of AuCS has only been evaluated in the 24 erroneous syn-
chronization scenarios and may not be able to generalize
to other datasets. Nevertheless, we mitigate this threat by
taking erroneous synchronization scenarios from two sources:
GkleeTests [24] and Simulee’s dataset [27].

In addition, we identify two main limitations of AuCS.
Firstly, that AuCS depends on the detection tool for CUDA
synchronization bugs. In our work, we use Simulee to detect
CUDA synchronization bugs and pass the result to AuCS. Nev-
ertheless, our experiment results demonstrate that AuCS can
automatically synchronize target kernel function effectively
when the detection part is robust and reliable. Secondly, AuCS
cannot handle the situation when different threads execute the
same loop in different iterations and data synchronization is
needed inside the loop. Although this situation rarely occurs
in the data set we explored, we leave the synchronization of
such scenarios as future work.

VII. RELATED WORK

CUDA synchronization bug detection. While the ap-
proaches regarding traditional software bug detections have
been largely studied [8], [10], [28], [29], there are quite limited
studies on CUDA synchronization bug detection. Several tech-
niques exist for verifying the correctness of synchronization
for multi-threaded CPU programs [30], [31]. In this work, we
choose Simulee as our detection part to detect synchronization
bugs since it has been shown to represent the state-of-the-art
in terms of performance and detection ability. Simulee [13]
is a dynamic detection tool that uses test inputs generated
by Evolutionary Programming. On the other hand, Gklee [5]
traces execution flow of threads and collects write statement
set and read statement set, then determines whether there is any
synchronization bugs by applying SMT solver. LDetector [32]
instrumented compiler to detect races by using diffs between
memory snapshots. CURD [3] is a compiler-based race detec-
tor like [33] which uses LLVM to instrument memory accesses
and barriers in a real running process.

Synchronization bug repair. Automated debugging tech-
niques have been proposed to localize [34]–[40] and fix [41]–
[53] different types of bugs. In the context of synchronization
bugs, there are many automated program repair approaches

for traditional multi-thread CPU programs. CFix [54] inserts
synchronization operations into buggy code to make a correct
patch, and selects best patch among the candidates to achieve
a better performance. PFix [55] fixes synchronization bugs by
inferring locking policies from memory access pattern. Pro-
gram synthesis is another research area that is closely related
to automated program repair. Program synthesis techniques
have been successfully applied in the context of program repair
to automatically synthesize expression/statements for repairing
buggy programs [56]–[60]. In the context of program synthe-
sis, AutoSync [14] is the most closely related work to our
paper. Similar to our work, AutoSync fixes synchronization
problems for GPU kernels by inserting barrier functions. There
are several key differences of our work compared to AutoSync:
(1) AutoSync relies on GPUVerify for determining the race
location and providing a black-box correctness oracle, whereas
we use program transformation for finding the correct location
for placing the barrier functions; (2) AutoSync assumes that
the race location exists in the buggy GPU programs but we
show in Section III that creation of new blocks is needed
for fixing more complex synchronization bugs; and (3) our
approach is more general than AutoSync as we consider
all synchronization scenarios, including data races, barrier
divergence and redundant barrier function.

Compiler optimization. Compilers have applied different
methods to transform the structure of original code without
changing its semantics. Bacon et al. [12] introduced a bunch
of transformation methods to restructure the original program
in order to achieve a better performance. As our program
transformation acts on the LLVM bitcode level and our results
show that AuCS could automate synchronization for CUDA
programs rapidly, a potential future work would be to integrate
the workflow of AuCS as part of compiler optimization.

VIII. CONCLUSIONS

In this paper, we propose an automatic synchronization tool
named AuCS for CUDA program in order to save developers
from designing error-prone and complicated synchronization
mechanism. Fixing synchronization bugs for CUDA programs
is challenging because the barrier functions should be located
at Basic Blocks to avoid barrier divergence. Based on the
detection reported by Simulee, AuCS creates Basic Blocks
among the buggy statements via program transformation with-
out changing the original semantics for barrier functions to
synchronize the data flow. AuCS can automatically synchronize
20 of 24 synchronization scenarios from the three real-world
CUDA projects and Gklee benchmark.

IX. ACKNOWLEDGEMENT

This work is partially supported by the National
Natural Science Foundation of China (Grant No.
61902169 and No. 61902170), Shenzhen Peacock Plan
(Grant No. KQTD2016112514355531), and Science
and Technology Innovation Committee Foundation of
Shenzhen (Grant No. ZDSYS201703031748284 and No.
JCYJ20170817110848086). This work is also partially

supported by National Science Foundation under Grant No.
CCF-1763906 and Amazon. The authors also thank Yicheng
Ouyang for the help with editing the paper.

REFERENCES

[1] “Cuda program introduction,” https://en.wikipedia.org/wiki/CUDAr,
2019.

[2] “Gpgpu introduction,” https://en.wikipedia.org/wiki/General-purpose
computing on graphics processing units, 2019.

[3] Y. Peng, V. Grover, and J. Devietti, “Curd: A dynamic cuda race
detector,” in Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI 2018.
New York, NY, USA: ACM, 2018, pp. 390–403. [Online]. Available:
http://doi.acm.org/10.1145/3192366.3192368

[4] A. Eizenberg, Y. Peng, T. Pigli, W. Mansky, and J. Devietti,
“Barracuda: Binary-level analysis of runtime races in cuda programs,”
in Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2017. New
York, NY, USA: ACM, 2017, pp. 126–140. [Online]. Available:
http://doi.acm.org/10.1145/3062341.3062342

[5] G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, and S. P. Rajan,
“Gklee: Concolic verification and test generation for gpus,” SIGPLAN
Not., vol. 47, no. 8, pp. 215–224, Feb. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2370036.2145844

[6] P. Li, X. Hu, D. Chen, J. Brock, H. Luo, E. Z. Zhang, and C. Ding,
“Ld: Low-overhead gpu race detection without access monitoring,”
ACM Trans. Archit. Code Optim., vol. 14, no. 1, pp. 9:1–9:25, Mar.
2017. [Online]. Available: http://doi.acm.org/10.1145/3046678

[7] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar,
and M. Sridharan, “Efficient and precise datarace detection for
multithreaded object-oriented programs,” SIGPLAN Not., vol. 37, no. 5,
pp. 258–269, May 2002. [Online]. Available: http://doi.acm.org/10.
1145/543552.512560

[8] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic data race detector for multithreaded programs,”
ACM Trans. Comput. Syst., vol. 15, no. 4, pp. 391–411, Nov. 1997.
[Online]. Available: http://doi.acm.org/10.1145/265924.265927

[9] A. Dinning and E. Schonberg, “An empirical comparison of monitoring
algorithms for access anomaly detection,” in Proceedings of the Second
ACM SIGPLAN Symposium on Principles &Amp; Practice of Parallel
Programming, ser. PPOPP ’90. New York, NY, USA: ACM, 1990,
pp. 1–10. [Online]. Available: http://doi.acm.org/10.1145/99163.99165

[10] R. H. B. Netzer and B. P. Miller, “Improving the accuracy of data race
detection,” SIGPLAN Not., vol. 26, no. 7, pp. 133–144, Apr. 1991.
[Online]. Available: http://doi.acm.org/10.1145/109626.109640

[11] “The simulee project,” https://github.com/Lebronmydx/Simulee, 2019.
[12] D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler transformations

for high-performance computing,” ACM Computing Surveys (CSUR),
vol. 26, no. 4, pp. 345–420, 1994.

[13] M. Wu, H. Zhou, L. Zhang, C. Liu, and Y. Zhang, “Characterizing and
detecting cuda program bugs,” arXiv,1905.01833, 2019.

[14] S. Anand and N. Polikarpova, “Automatic synchronization for gpu
kernels,” in 2018 Formal Methods in Computer Aided Design (FMCAD).
IEEE, 2018, pp. 1–9.

[15] “Introduction cuda c,” https://devblogs.nvidia.com/
easy-introduction-cuda-c-and-c/, 2019.

[16] P. Collingbourne, A. F. Donaldson, J. Ketema, and S. Qadeer, “Interleav-
ing and lock-step semantics for analysis and verification of gpu kernels,”
in Programming Languages and Systems, M. Felleisen and P. Gardner,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 270–
289.

[17] Xtra-Computing, “Thundersvm,” https://github.com/Xtra-Computing/
thundersvm.

[18] arrayfire, “Arrayfire,” https://github.com/arrayfire/arrayfire, 2019.
[19] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong

program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization, ser. CGO ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 75–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=977395.977673

[20] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
IEEE Transactions on Evolutionary computation, vol. 3, no. 2, pp. 82–
102, 1999.

https://en.wikipedia.org/wiki/CUDAr
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
http://doi.acm.org/10.1145/3192366.3192368
http://doi.acm.org/10.1145/3062341.3062342
http://doi.acm.org/10.1145/2370036.2145844
http://doi.acm.org/10.1145/3046678
http://doi.acm.org/10.1145/543552.512560
http://doi.acm.org/10.1145/543552.512560
http://doi.acm.org/10.1145/265924.265927
http://doi.acm.org/10.1145/99163.99165
http://doi.acm.org/10.1145/109626.109640
https://github.com/Lebronmydx/Simulee
https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/
https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/
https://github.com/Xtra-Computing/thundersvm
https://github.com/Xtra-Computing/thundersvm
https://github.com/arrayfire/arrayfire
http://dl.acm.org/citation.cfm?id=977395.977673

[21] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson,
“Gpuverify: A verifier for gpu kernels,” SIGPLAN Not., vol. 47,
no. 10, pp. 113–132, Oct. 2012. [Online]. Available: http://doi.acm.org/
10.1145/2398857.2384625

[22] M. Zheng, M. S. Rogers, Z. Luo, M. B. Dwyer, and S. F. Siegel,
“Civl: formal verification of parallel programs,” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2015, pp. 830–835.

[23] F. R. Monteiro, E. H. d. S. Alves, I. S. Silva, H. I. Ismail, L. C. Cordeiro,
and E. B. de Lima Filho, “Esbmc-gpu a context-bounded model checking
tool to verify cuda programs,” Science of Computer Programming, vol.
152, pp. 63–69, 2018.

[24] Geof23, “Gkleetests,” https://github.com/Geof23/GkleeTests.
[25] arrayfire, “Fix race condition in reduce first kernel.”

https://github.com/arrayfire/arrayfire/commit/
d88e6a3540f89d3289df0ee8f42c3bda0682597c, 2019.

[26] arrayfire, “Remove the need for volatile memory by always
using syncthreads(),” https://github.com/masashi-y/arrayfire/commit/
0d0d7d1285aa4a2c8cce5a5f7b377fe4b4965f60, 2019.

[27] “The simulee project,” https://github.com/Lebronmydx/Simulee/tree/
master/raw data report script, 2019.

[28] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “Avio: Detecting atomicity
violations via access interleaving invariants,” in Proceedings of
the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XII.
New York, NY, USA: ACM, 2006, pp. 37–48. [Online]. Available:
http://doi.acm.org/10.1145/1168857.1168864

[29] L. Chew and D. Lie, “Kivati: Fast detection and prevention of atomicity
violations,” in Proceedings of the 5th European Conference on Computer
Systems, ser. EuroSys ’10. New York, NY, USA: ACM, 2010, pp. 307–
320. [Online]. Available: http://doi.acm.org/10.1145/1755913.1755945

[30] P. d. C. Gomes, D. Gurov, M. Huisman, and C. Artho, “Specification
and verification of synchronization with condition variables,” Science of
Computer Programming, vol. 163, pp. 174–189, 2018.

[31] L. Cordeiro and B. Fischer, “Verifying multi-threaded software using
smt-based context-bounded model checking,” in 2011 33rd International
Conference on Software Engineering (ICSE). IEEE, 2011, pp. 331–340.

[32] P. Li, C. Ding, and T. Soyata, “Ldetector: A low overhead race detector
for gpu programs,” 2014.

[33] “Racecheck tool,” https://docs.nvidia.com/cuda/cuda-memcheck/index.
html#racecheck-tool, 2019.

[34] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: integrating multiple fault
diagnosis dimensions for deep fault localization,” in Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and
Analysis. ACM, 2019, pp. 169–180.

[35] M. Zhang, Y. Li, X. Li, L. Chen, Y. Zhang, L. Zhang, and S. Khurshid,
“An empirical study of boosting spectrum-based fault localization via
pagerank,” IEEE Transactions on Software Engineering, pp. 1–1, 2019.

[36] X. Li and L. Zhang, “Transforming programs and tests in tandem for
fault localization,” Proceedings of the ACM on Programming Languages,
vol. 1, no. OOPSLA, p. 92, 2017.

[37] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Transactions on Software Engineering, 2019.

[38] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
in Proceedings of the 39th International Conference on Software Engi-
neering, 2017, pp. 609–620.

[39] L. Zhang, L. Zhang, and S. Khurshid, “Injecting mechanical faults to
localize developer faults for evolving software,” in OOPSLA, vol. 48,
no. 10, 2013, pp. 765–784.

[40] J. Sohn and S. Yoo, “Fluccs: Using code and change metrics to
improve fault localization,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM,
2017, pp. 273–283.

[41] A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair
via bytecode mutation,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM,
2019, pp. 19–30.

[42] Y. Lou, J. Chen, L. Zhang, D. Hao, and L. Zhang, “History-driven
build failure fixing: how far are we?” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 2019, pp. 43–54.

[43] S. H. Tan, Z. Dong, X. Gao, and A. Roychoudhury, “Repairing
crashes in android apps,” in Proceedings of the 40th International
Conference on Software Engineering, ser. ICSE ’18. New York,
NY, USA: ACM, 2018, pp. 187–198. [Online]. Available: http:
//doi.acm.org/10.1145/3180155.3180243

[44] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair,” in Proceedings of
the 39th International Conference on Software Engineering, ser. ICSE
’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 416–426. [Online].
Available: https://doi.org/10.1109/ICSE.2017.45

[45] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in ICSE’ 2013. IEEE Press,
2013, pp. 802–811.

[46] S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury, “Anti-
patterns in search-based program repair,” in Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering. ACM, 2016, pp. 727–738.

[47] S. H. Tan and A. Roychoudhury, “Relifix: Automated repair of software
regressions,” in Proceedings of the 37th International Conference
on Software Engineering - Volume 1, ser. ICSE ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 471–482. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2818754.2818813

[48] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Avatar: Fixing
semantic bugs with fix patterns of static analysis violations,” in 2019
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2019, pp. 1–12.

[49] S. H. Tan, J. Yi, S. Mechtaev, A. Roychoudhury et al., “Codeflaws: a
programming competition benchmark for evaluating automated program
repair tools,” in Proceedings of the 39th International Conference on
Software Engineering Companion. IEEE Press, 2017, pp. 180–182.

[50] J. Yi, S. H. Tan, S. Mechtaev, M. Böhme, and A. Roychoudhury,
“A correlation study between automated program repair and test-suite
metrics,” Empirical Software Engineering, vol. 23, no. 5, pp. 2948–2979,
2018.

[51] J. Yi, U. Z. Ahmed, A. Karkare, S. H. Tan, and A. Roychoudhury,
“A feasibility study of using automated program repair for introductory
programming assignments,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. ACM, 2017, pp.
740–751.

[52] B. Daniel, D. Dig, T. Gvero, V. Jagannath, J. Jiaa, D. Mitchell, J. Nogiec,
S. H. Tan, and D. Marinov, “Reassert: a tool for repairing broken unit
tests,” in 2011 33rd International Conference on Software Engineering
(ICSE). IEEE, 2011, pp. 1010–1012.

[53] J. Jiang, L. Ren, Y. Xiong, and L. Zhang, “Inferring program transfor-
mations from singular examples via big code,” in ASE, 2019, to appear.

[54] G. Jin, W. Zhang, and D. Deng, “Automated concurrency-bug fixing,”
in Presented as part of the 10th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 12), 2012, pp. 221–236.

[55] H. Lin, Z. Wang, S. Liu, J. Sun, D. Zhang, and G. Wei, “Pfix: fixing
concurrency bugs based on memory access patterns,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 2018, pp. 589–600.

[56] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 2013, pp. 772–
781.

[57] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Proceedings of the
38th international conference on software engineering. ACM, 2016,
pp. 691–701.

[58] S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix: Looking for simple
program repairs,” in Proceedings of the 37th International Conference
on Software Engineering-Volume 1. IEEE Press, 2015, pp. 448–458.

[59] S. Mechtaev, X. Gao, S. H. Tan, and A. Roychoudhury, “Test-
equivalence analysis for automatic patch generation,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 27, no. 4,
p. 15, 2018.

[60] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3: syntax-
and semantic-guided repair synthesis via programming by examples,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, 2017, pp. 593–604.

http://doi.acm.org/10.1145/2398857.2384625
http://doi.acm.org/10.1145/2398857.2384625
https://github.com/Geof23/GkleeTests
https://github.com/arrayfire/arrayfire/commit/d88e6a3540f89d3289df0ee8f42c3bda0682597c
https://github.com/arrayfire/arrayfire/commit/d88e6a3540f89d3289df0ee8f42c3bda0682597c
https://github.com/masashi-y/arrayfire/commit/0d0d7d1285aa4a2c8cce5a5f7b377fe4b4965f60
https://github.com/masashi-y/arrayfire/commit/0d0d7d1285aa4a2c8cce5a5f7b377fe4b4965f60
https://github.com/Lebronmydx/Simulee/tree/master/raw_data_report_script
https://github.com/Lebronmydx/Simulee/tree/master/raw_data_report_script
http://doi.acm.org/10.1145/1168857.1168864
http://doi.acm.org/10.1145/1755913.1755945
https://docs.nvidia.com/cuda/cuda-memcheck/index.html#racecheck-tool
https://docs.nvidia.com/cuda/cuda-memcheck/index.html#racecheck-tool
http://doi.acm.org/10.1145/3180155.3180243
http://doi.acm.org/10.1145/3180155.3180243
https://doi.org/10.1109/ICSE.2017.45
http://dl.acm.org/citation.cfm?id=2818754.2818813

