
Bugine: a bug report recommendation system for Android apps

Ziqiang Li
Southern University of Science and Technology

11510352@mail.sustech.edu.cn

Shin Hwei Tan∗

Southern University of Science and Technology

tansh3@sustech.edu.cn

ABSTRACT

Many automated test generation tools were proposed for finding

bugs in Android apps. However, a recent study revealed that de-

velopers prefer reading automated test generation cased written in

natural language. We present Bugine, a new bug recommendation

system that automatically selects relevant bug reports from other

applications that have similar bugs. Bugine (1) searches for GitHub

issues that mentioned common UI components shared between

the app under test and the apps in our database, and (2) ranks the

quality and relevance of issues. Our results show that Bugine could

find 34 new bugs in five evaluated apps.

CCS CONCEPTS

• Software and its engineering→ Software libraries and repos-

itories; Software maintenance tools.

KEYWORDS

bug report, recommendation system, Android apps

ACM Reference Format:

Ziqiang Li and Shin Hwei Tan. 2020. Bugine: a bug report recommenda-

tion system for Android apps. In 42nd International Conference on Software

Engineering Companion (ICSE ’20 Companion), October 5–11, 2020, Seoul,

Republic of Korea. ACM, New York, NY, USA, 2 pages. https://doi.org/10.

1145/3377812.3390906

1 INTRODUCTION

Bug finding is a creative and inspiring activity. Many automated

test generation [8] and repair techniques have been proposed to

ensure the reliability of Android apps [1, 3, 6]. However, reading

and reproducing the automatically generated test cases could be

time-consuming. A study showed that developers prefer reading

automatically generated test cases written in natural language [4].

This study also revealed that developers prefer manual testing com-

pared to automated testing due to the learning curve of automated

tools or lack of specific knowledge. Moreover, automated testing

techniques for Android apps mostly focus on finding crashes [5],

but neglect other non-crash related bugs (e.g., UI bugs). Meanwhile,

many manually crafted bug reports (in natural language) are avail-

able in open-source repositories like GitHub.

Inspired by developers’ requirements and the redundancy of bug

reports, we propose Bugine [7]. Given an Android app 𝐴, Bugine

∗Corresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’20 Companion, October 5–11, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7122-3/20/05.
https://doi.org/10.1145/3377812.3390906

Figure 1: Workflow for Bugine

Table 1: UI description patterns

Component Example

Resource name android:id="@+id/my_btn"
View name <Button android:id="@+id/my_btn" />

XML file name main_layout.xml

will automatically select relevant bug reports for 𝐴. Each relevant
bug report may include reproduction steps and bug fixes of similar

bugs that could be useful for testing and debugging.

2 METHODOLOGY

Figure 1 shows the workflow of Bugine which includes: (S1) build-

ing a database of GitHub issues, (S2) finding common UI compo-

nents between 𝐴𝑝𝑝𝑞𝑢𝑒𝑟𝑦 and 𝐴𝑝𝑝𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 , (S3) constructing query
based on common components from (S2) to search for relevant

issues of 𝐴𝑝𝑝𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 , (S4) ranking the results based on the quality.
Building a database of GitHub issues. Our crawler selects An-

droid apps based on: (1) the users’ rating and downloads in the App

store, (2) the number of discussion and comments by developers,

(3) the number of the star and issue of GitHub repository, and (4)

the category of GitHub repository. Then, we collected all the issues

and the meta-data of the selected apps (i.e., title, author, number of

user comments, labels, issue state, body, commit SHA, etc.). We also

downloaded the source code from the master branch of each app for

subsequent steps. Our database has 23980 issues from 34 different

applications that are selected from 10 different functionalities (e.g.,

cloud client, GitHub client, file explorer, web browser, etc.).

Data Pre-Processing. Our data consists of GitHub issues and the

source code of the corresponding apps. For the GitHub issues, Bug-

ine pre-processes them with commonly used NLP techniques. We

also use Humps 1 to unify the naming conventions of program

variables, including snake case, camel case, into variable tuples and

split compound (composite words). For the source code, specifically

XML files, we also extract structural information of UI components.

Extracting app description files. The UI of Android apps is typi-

cally declared in XML resource files that define the structural layout

of the UI components (e.g., view classes and subclasses). Each de-

fined resource will be mapped to a resource ID. To generate app

1https://github.com/nficano/humps

276

2020 IEEE/ACM 42nd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)



Table 2: Statistics and Evaluation Results of the Android apps used

App Name Category KLOC #Downloads Rating Version No.
#GitHub #GitHub Issue # Bugs Found

Stars (closed) (new,old)

Camera-Roll Gallery 26.00 100,000+ 4.2 1.0.6 420 227(133) (11, 0)

PocketHub GitHub client 31.35 10,000+ 3.3 0.5.1 9429 644(526) (12, 2)

Simple File Manager Explorer 5.84 50,000+ 4.5 6.3.4 378 189(130) (6, 2)

Zapp Broadcast 8.41 N.A. N.A. 3.2.0 60 151(137) (2, 7)

Simpletask Reminder 24.80 10,000+ 4.7 10.3.0 349 821(583) (3, 2)

description file for an app, Bugine parses all its XML files in the

“src/main/res” folder. Specifically, as shown in Table 1, we extract
XML file names, view names and resource names, that describe the

UI components of an app. Then, we combine the three pieces of

information to search for the UI components of 𝐴𝑝𝑝𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 with
the query: XML file name ∧ View Name ∧ Resource name.

Similarity Measures. Bugine uses two widely used similarity

measures for computing text similarity [9]. To measure similarity

between issues’ title and query, Bugine uses overlap coefficient [2].

Bugine uses n-gram similarity to measure the similarity between

issue’s text body and query, and between UI components because

they could contain structural information. Then, Bugine selects

the𝐴𝑝𝑝𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 issues with relevant UIs by the weighted similarity
functions that evaluate the similarity of the parts of the two corpora,

and search keywords are generated from their common parts.

Ranking relevant GitHub Issues. Bugine ranks the quality of

each issue 𝑬 based on several factors 𝑓𝑖 (·), including (1) the length
of the text body of 𝑬 , (2) the status of 𝑬 (closed / opened), (3) if 𝑬
contains any bug-fixing commit, (4) the number of replies that 𝑬
received, (5) the overlap coefficient between the search keywords

and corpus, (6) if 𝑬 contains all keywords in the corpus, and (7) if

𝑬 contains any important keyword (e.g., reproduce, defect). Given

an issue 𝑬 , a component �𝐶 that is similar to the search keywords,

the weighted ranking score is 𝑆 (𝐸, �𝐶,𝑊 ) =
∑𝑛
𝑖=1𝑤𝑖 × 𝑓𝑖 (𝐸, �𝐶).

3 EVALUATION

We evaluate Bugine on five open-source Android apps. Table 2 lists

information about the evaluated apps. We select these apps because

they are diverse in app categories, sizes, popularity, and the number

of issues. Our evaluation answers the research questions below:

RQ1 (Relevance): What is the overall performance of Bugine in

recommending relevant GitHub issues?

RQ2 (Reproducibility): How many bugs can Bugine find that

can be reproduced and lead to unexpected behavior in 𝐴𝑝𝑝𝑞𝑢𝑒𝑟𝑦?

We evaluate Bugine’s ranking performance using two previously

used measures [10].

Prec@k measures the retrieval precision over the top 𝑘 (we use
k=5, 10, 20, 50) documents in the ranked list:

Prec@k = [# 𝑜 𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑠 𝑖𝑛 𝑡𝑜𝑝 𝑘] /𝑘
Mean Reciprocal Rank (MRR) For each query𝑞, MRRmeasures
the position 𝑓 𝑖𝑟𝑠𝑡𝑞 of the first relevant document in the ranked list:

MRR =
[∑ |𝑄 |

𝑞=1
1

first𝑞

]
/|𝑄 |

RQ1: Ranking Performance of Bugine. Two raters indepen-

dently evaluate the top 100 ranked issues of each app that have not

been used before. Overall, the Prec@10 results range from 0.1 to 0.7,

which means that among the top 10 issues recommended by Bug-

ine, there is at least one relevant issue. Meanwhile, the MRR values

for Bugine range from 0.34 to 0.75, which means that the ranking

for the first relevant document ranges between 3rd (0.34) and 1st

(0.75). This indicates that Bugine could recommend relevant issues

for the evaluated apps.

RQ2: Number of bugs that Bugine finds.With two raters, we

evaluate RQ2 bymanually replicating the top-ranked issues to check

if they are reproducible in 𝐴𝑝𝑝𝑞𝑢𝑒𝑟𝑦 and we consider that Bugine
discovers a bug if such issue ranks in the top 100 . The “# Bugs Found”

column in Table 2 shows the number of bugs found by Bugine. In

total, we found 34 new bugs and 13 old bugs in all the five evaluated

apps. Overall, our results show that Bugine could recommend

relevant issues, which leads to the discovery of new bugs. All bugs

found by Bugine are archived at https://bugine.github.io/.

4 CONCLUSION

We introduce a new approach that recommends relevant GitHub

issues for an app under test. Given an app under test, Bugine

searches for relevant GitHub issues based on the similarities of UI

components shared with other apps in our database and further

ranks them based on their quality. Our evaluation shows that it

helps to discover 34 new bugs in the five evaluated apps.

Acknowledgments. This work is partially supported by the

National Natural Science Foundation of China (Grant No. 61902170)

and Natural Science Foundation of Guangdong Province (Grant No.

2020A1515011494).

REFERENCES
[1] Xiang Gao, Shin Hwei Tan, Zhen Dong, and Abhik Roychoudhury. 2018. Android

Testing via Synthetic Symbolic Execution. New York, NY, USA.
[2] Gerald Kowalski. 2010. Information retrieval architecture and algorithms. Springer

Science & Business Media.
[3] Mario Linares-Vásquez, Gabriele Bavota, Michele Tufano, Kevin Moran, Mas-

similiano Di Penta, Christopher Vendome, Carlos Bernal-Cárdenas, and Denys
Poshyvanyk. 2017. Enabling mutation testing for android apps. In FSE. 233–244.

[4] Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Kevin Moran, and Denys Poshy-
vanyk. 2017. How do developers test android applications?. In ICSME. IEEE,
613–622.

[5] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Christopher Ven-
dome, and Denys Poshyvanyk. 2016. Automatically discovering, reporting and
reproducing android application crashes. In ICST. IEEE, 33–44.

[6] ShinHwei Tan, ZhenDong, XiangGao, andAbhik Roychoudhury. 2018. Repairing
crashes in android apps. In ICSE. IEEE, 187–198.

[7] Shin Hwei Tan and Ziqiang Li. 2020. Collaborative Bug Finding for Android
Apps. In ICSE.

[8] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. 2012. @tComment:
Testing Javadoc Comments to Detect Comment-Code Inconsistencies. In ICST
(ICST ’12). USA, 260–269. https://doi.org/10.1109/ICST.2012.106

[9] Song Wang, Devin Chollak, Dana Movshovitz-Attias, and Lin Tan. 2016. Bugram:
bug detection with n-gram language models. In ASE. 708–719.

[10] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where Should the Bugs Be Fixed?
- More Accurate Information Retrieval-based Bug Localization Based on Bug
Reports. In ICSE. IEEE Press, 14–24.

277


